PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer’s disease

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deep brain stimulation (DBS) is a neuromodulation method that modulates neuronal activity. A trend in the treatment of Alzheimer’s disease (AD) is targeting key points of neural circuits with DBS. Here, we explored the effects of DBS targeted to the entorhinal cortex (EC) on neurons in the hippocampal CA1 in a mouse model of preclinical AD. Specifically, we recorded field potential signals from CA1 in preclinical AD mice after DBS of the EC (1 h/day for 21 days of 100 lA, 90 ls, 10 Hz, biphasic square wave pulse) with in-vivo electrophysiology and evaluated corresponding changes in behavior with the open field task and Morris water maze (MWM) task. We also assessed changes in pathological markers and neurogenesis in the hippocampus with immunohistological staining. DBS of the EC increased theta and gamma power and modulated theta in the high gamma band (50-100 Hz) in preclinical AD mice. After DBS of the EC, these mice performed better in the MWM task and exhibited reduced deposition of beta-amyloid and neuronal changes including significant increases in proliferating neurons and immature neurons. This is the first study to target the EC with DBS and analyze resulting neural oscillations in the hippocampal CA1 in a model of preclinical AD. The findings support the use of DBS as a potential treatment for AD.
Twórcy
autor
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
autor
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
autor
  • Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
autor
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
autor
  • Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
autor
  • Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
autor
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
autor
  • Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
autor
  • Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
  • Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
Bibliografia
  • [1] Dubois B, Villain N, Frisoni GB, Rabinovici GD, Feldman HH. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol 2021;20 (6):484-96.
  • [2] Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot J-G. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Ab overproduction in a mouse model of Alzheimer’s disease. Eur J Neurosci 2013;37 (12):1896-902.
  • [3] Wang S, Li K, Zhao S, Zhang X, Yang Z, Zhang J, et al. Earlystage dysfunction of hippocampal theta and gamma oscillations and its modulation of neural network in a transgenic 5xFAD mouse model. Neurobiol Aging 2020;94:121-9.
  • [4] Mondragon-Rodriguez S, Gu N, Manseau F, Williams S. Alzheimer’s transgenic model is characterized by very early brain network alterations and beta-CTF fragment accumulation: Reversal by beta-secretase inhibition. Front Cell Neurosci 2018;12:121.
  • [5] Jafari Z, Kolb BE, Mohajerani MH. Neural oscillations and brain stimulation in Alzheimer’s disease. Prog Neurobiol 2020;194:101878.
  • [6] Buzsaki G. Theta oscillations in the hippocampus. Neuron 2002;33(3):325-40.
  • [7] Sabbagh MN, Hendrix S, Harrison JE. FDA position statement ‘‘Early Alzheimer’s disease: Developing drugs for treatment, Guidance for Industry”. Alzheimers Dement (N Y) 2019;5:13-9.
  • [8] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):280-92.
  • [9] Bateman RJ, Xiong CJ, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012;367 (9):795-804.
  • [10] Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J Neurosurg 2019;131(2):333-42.
  • [11] Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019;15(3):148-60.
  • [12] Aldehri M, Temel Y, Alnaami I, Jahanshahi A, Hescham S. Deep brain stimulation for Alzheimer’s disease: An update. Surg Neurol Int 2018;9:58.
  • [13] Luo YP, Sun YW, Tian XL, Zheng X, Wang X, Li W, et al. Deep brain stimulation for Alzheimer’s disease: Stimulation parameters and potential mechanisms of action. Front Aging Neurosci 2021;13:619543.
  • [14] Stone SSD, Teixeira CM, DeVito LM, Zaslavsky K, Josselyn SA, Lozano AM, et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011;31(38):13469-84.
  • [15] Mann A, Gondard E, Tampellini D, Milsted JAT, Marillac D, Hamani C, et al. Chronic deep brain stimulation in an Alzheimer’s disease mouse model enhances memory and reduces pathological hallmarks. Brain Stimul 2018;11 (2):435-44.
  • [16] Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 2012;366 (6):502-10.
  • [17] Hansen N, Chaieb L, Derner M, Hampel KG, Elger CE, Surges R, et al. Memory encoding-related anterior hippocampal potentials are modulated by deep brain stimulation of the entorhinal area. Hippocampus 2017;28 (1):12-7.
  • [18] Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 2008;63(1):119-23.
  • [19] Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry 2015;20 (3):353-60.
  • [20] Lv Q, Du A, Wei W, Li Y, Liu G, Wang XP. Deep Brain Stimulation: A Potential Treatment for Dementia in Alzheimer’s Disease (AD) and Parkinson’s Disease Dementia (PDD). Front Neurosci 2018;12:360.
  • [21] Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82(4):239-59.
  • [22] D’Albis T. Models of spatial representation in the medial entorhinal cortex. Berlin: Humboldt-Universität; 2018.
  • [23] Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, et al. Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model Alzheimer’s disease. Neuropsychopharmacology 2017;42(13):2493-503.
  • [24] Harris KD, Quiroga RQ, Freeman J, Smith SL. Improving data quality in neuronal population recordings. Nat Neurosci 2016;19(9):1165-74.
  • [25] Chorev E, Epsztein J, Houweling AR, Lee AK, Brecht M. Electrophysiological recordings from behaving animals-going beyond spikes. Curr Opin Neurobiol 2009;19(5):513-9.
  • [26] Khosla A, Khandnor P, Chand T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern Biomed Eng 2020;40(2):649-90.
  • [27] Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci USA 2008;105(51):20517-22.
  • [28] Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 2007;11(7):267-9.
  • [29] Yanovsky Y, Ciatipis M, Draguhn A, Tort ABL, Brankack J. Slow oscillations in the mouse hippocampus entrained by nasal respiration. J Neurosci 2014;34(17):5949-64.
  • [30] Sun Y, Giacobbe P, Tang CW, Barr MS, Rajji T, Kennedy SH, et al. Deep brain stimulation modulates gamma oscillations and theta-gamma coupling in treatment resistant depression. Brain Stimul 2015;8(6):1033-42.
  • [31] Sanders TH, Jaeger D. Optogenetic stimulation of corticosubthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 2016;95:225-37.
  • [32] Li YD, Xu JM, Liu YF, Zhu J, Liu N, Zeng WB, et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci 2017;20 (4):559-70.
  • [33] Zhu SH, Wang JH, Zhang YB, He J, Kong JM, Wang JF, et al. The role of neuroinflammation and amyloid in cognitive impairment in an APP/PS1 transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 2017;23(4):310-20.
  • [34] Woo DC, Lee SH, Lee DW, Kim SY, Kim GY, Rhim HS, et al. Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by H-1 HRMAS. Behav Brain Res 2010;211(1):125-31.
  • [35] Paxinos GF, Franklin K. The mouse brain in stereotaxic coordinates. New York: Academic Press; 2001.
  • [36] Flomerfelt FA, Gress RE. Analysis of cell proliferation and homeostasis using EdU labeling. Methods Mol Biol 2016;1323:211-20.
  • [37] Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019;1916:99-103.
  • [38] Luo YP, Yang WJ, Li N, Yang XF, Zhu BL, Wang C, et al. Anodal transcranial direct current stimulation can improve spatial learning and memory and attenuate Ab42 burden at the early stage of Alzheimer’s disease in APP/PS1 transgenic mice. Front Aging Neurosci 2020;12:134.
  • [39] Sun YW, Luo YP, Zheng XL, Wu XY, Wen HZ, Hou WS. Multiple sessions of entorhinal cortex deep brain stimulation in C57BL/6J mice increases exploratory behavior and hippocampal neurogenesis. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2021; 2021. p. 6390-393.
  • [40] Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 1999;19 (1):274-87.
  • [41] Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: A platform for analyzing neural signals. J Neurosci Methods 2010;192(1):146-51.
  • [42] Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 2011;6:85.
  • [43] Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 2010;68(4):521-34.
  • [44] Leoutsakos JMS, Yan HJ, Anderson WS, Asaad WF, Baltuch G, Burke A, et al. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): A two year follow-up including results of delayed activation. J Alzheimers Dis 2018;64(2):597-606.
  • [45] Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 2001;25 (3):235-60.
  • [46] Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014;5:88.
  • [47] Clark RE, Broadbent NJ, Squire LR. The hippocampus and spatial memory: findings with a novel modification of the water maze. J Neurosci 2007;27(25):6647-54.
  • [48] Shin KY, Kim KY, Suh YH. Dehydroevodiamine.HCl enhances cognitive function in memory-impaired rat models. Korean. J Physiol Pharmacol 2017;21(1):55-64.
  • [49] Arrieta-Cruz I, Pavlides C, Pasinetti GM. Deep brain stimulation in midline thalamic region facilitates synaptic transmission and short-term memory in a mouse model of Alzheimer’s disease. Transl Neurosci 2010;1(3):188-94.
  • [50] Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP. Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 2002;83(6):1509-24.
  • [51] Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010;11(5):339-50.
  • [52] Zhao CM, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008;132 (4):645-60.
  • [53] Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 2008;11(10):1153-61.
  • [54] Mably AJ, Gereke BJ, Jones DT, Colgin LL. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus 2017;27(4):378-92.
  • [55] Senova S, Chaillet A, Lozano AM. Fornical closed-loop stimulation for Alzheimer’s disease. Trends Neurosci 2018;41 (7):418-28.
  • [56] Nakazono T, Takahashi S, Sakurai Y. Enhanced Theta and High-Gamma Coupling during Late Stage of Rule Switching Task in Rat Hippocampus. Neuroscience 2019;412:216-32.
  • [57] Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, et al. Age-dependent disruption in hippocampal theta oscillation in amyloid-beta overproducing transgenic mice. Neurobiol Aging 2012;33(7):1481 e1413-1423.
  • [58] Zhang Z, Jing Y, Ma Y, Duan D, Li B, Holscher C, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 2020;525(4):928-35.
  • [59] Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016;539(7628):187-96.
  • [60] Chan D, Suk HJ, Jackson B, Milman NP, Stark D, Beach SD, et al. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer’s disease. J Intern Med 2021;290(5):993-1009.
  • [61] Hu R, Wei P, Jin L, Zheng T, Chen WY, Liu XY, et al. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model. Cell Death Dis 2017;8:e2717.
  • [62] Latchoumane CFV, Jackson L, Sendi MSE, Tehrani KF, Mortensen LJ, Stice SL, et al. Chronic electrical stimulation promotes the excitability and plasticity of ESC-derived neurons following glutamate-induced inhibition in vitro. Sci Rep 2018;8:10957.
  • [63] Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2016;115(1):19-38.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58e201db-c206-4960-a958-6cd59b25a9c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.