PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary results of the temperature distribution measurements around the vertical ground heat exchangers tubes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the preliminary results of the temperature distribution to a depth of 100 m in the two selected vertical geothermal wells during operation of the heat pump and ground temperature measurement without vertical ground probes work. Research was carried out from the third decade of December to the end of February. The wells are the lower energy source for two heat pumps brine/water type with heating power of 117.2 kW each and 95.9 kW cooling capacity installed in the building of The Faculty of Civil and Environmental Engineering, Bialystok University of Technology in Bialystok. With heat pumps work 52 vertical ground probes to a depth of 100 m each. The article presents the way of making probes equipped with 30 digital temperature sensors to record the temperature distribution in the vertical probes and in the ground and it shows the way of making the test bench using the groundwater wells with vertical probes. The average coefficient of performance COP of the heat pump HP in the months of January and February has been designated.
Rocznik
Strony
509--528
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., tab., fot.
Twórcy
  • Department of Heating, Ventilation, Air Conditioning, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Białystok, Poland, phone +48 85 746 96 35, fax +48 85 746 95 76
Bibliografia
  • [1] Zhao Y, Pang Z, Huang Y., Ma Z. An efficient hybrid model for thermal analysis of deep borehole heat exchangers. Geotherm Energy. 2020;8(18). DOI: 10.1186/s40517-020-00170-z.
  • [2] Rad FM, Fung AS, Leong WH. Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada. Energy Build. 2013;61:224-32. DOI: 10.1016/j.enbuild.2013.02.036.
  • [3] Minaei A, Maerefat M. A new analytical model for short-term borehole heat exchanger based on thermal resistance capacity model. Energy Build. 2017;146:233-42. DOI: 10.1016/j.enbuild.2017.04.064.
  • [4] Rad FM, Fung AS, Rosen MA. An integrated model for designing a solar community heating system with borehole thermal storage. Energy Sustain Dev. 2017;36:6-15. DOI: 10.1016/j.esd.2016.10.003.
  • [5] Rad FM, Fung AS. Solar community heating and cooling system with borehole thermal energy storage -review of systems. Renew Sustain Energy Rev. 2016;60:1550-61. DOI: 10.1016/j.rser.2016.03.025.
  • [6] Liu Z, Li R, Wang D, Li H, Shi L. Multilayer quasi-three-dimensional model for the heat transfer inside the borehole wall of a vertical ground heat exchanger. Geothermics. 2020;83:101711. DOI: 10.1016/j.geothermics.2019.101711.
  • [7] De Paly M, Hecht-Méndez J, Beck M, Blum P, Zell A, Bayer P. Optimization of energy extraction for closed shallow geothermal systems using linear programming. Geothermics. 2012;43:57-65. DOI: 10.1016/j.geothermics.2012.03.001.
  • [8] Zhao J, Wang H, Li X, Dai C. Experimental investigation and theoretical model of heat transfer of saturated soil around coaxial ground coupled heat exchanger. Appl Therm Eng. 2008;28:116-25. DOI: 10.1016/j.applthermaleng.2007.03.033.
  • [9] Zoras S, Dimoudi A, Kosmopoulos P. Analysis of conductive temperature variation due to multi-room underground interaction. Energy Build. 2012;55:433-8. DOI: 10.1016/j.enbuild.2012.08.033.
  • [10] Al-Temeemi A, Harris D. The generation of subsurface temperature profiles for Kuwait. Energy Build. 2001;33:837-41. DOI: 10.1016/S0378-7788(01)00069-X.
  • [11] Ouzzane M, Eslami-Nejad P, Aidoun Z, Lamarche L. Analysis of the convective heat exchange effect on the undisturbed ground temperature. Solar Energy. 2014;108:340-347. DOI: 10.1016/j.solener.2014.07.015.
  • [12] Pan A, Lu L, Tian Y. A new analytical model for short vertical ground heat exchangers with Neumann and Robin boundary conditions on ground surface. Int J Thermal Sci. 2020;152:106326. DOI: 10.1016/j.ijthermalsci.2020.106326.
  • [13] Nian Y, Wang X, Xie K, Cheng W. Estimation of ground thermal properties for coaxial BHE through distributed thermal response test. Renew Energy. 2020;152:1209e1219. DOI: 10.1016/j.renene.2020.02.006.
  • [14] Boban L, Soldo V, Fuji H. Investigation of heat pump performance in heterogeneous ground. Energy Convers Manage. 2020;211:112736. DOI: 10.1016/j.enconman.2020.112736.
  • [15] Ahmadfard M, Bernier M. A review of vertical ground heat exchanger sizing tools including an intermodel comparison. Renew Sustain Energy Rev. 2019;110:247-65. DOI: 10.1016/j.rser.2019.04.045.
  • [16] Sailer E, Taborda DMG, Zdravković L. A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses. Renew Energy. 2018; 118:579e590. DOI: 10.1016/j.renene.2017.11.035.
  • [17] Hu J. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow. Appl Energy. 2017;202:537-49. DOI: 10.1016/j.apenergy.2017.05.152.
  • [18] Morchio S, Fossa M. On the ground thermal conductivity estimation with coaxial borehole heat exchangers according to different undisturbed ground temperature profiles. Appl Therm Eng. 2020;173:115198. DOI: 10.1016/j.applthermaleng.2020.115198.
  • [19] Beier RA. Thermal response tests on deep borehole heat exchangers with geothermal gradient, Appl Therm Eng. 2020;178:115447. DOI: 10.1016/j.applthermaleng.2020.115447.
  • [20] Gónzález-Santander JL. Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition. J Eng Math. 2019;117:47-64. DOI: 10.1007/s10665-019-10007-9.
  • [21] Kerme ED, Fung AS. Heat transfer simulation, analysis and performance study of single U-tube borehole heat exchanger. Renew Energy. 2020;145:1430-48. DOI: 10.1016/j.renene.2019.06.004.
  • [22] Bakirci K. Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region. Energy. 2010;35:3088-96. DOI: 10.1016/j.energy.2010.03.054.
  • [23] Florides GA, Pouloupatis P, Kalogirou S, Messaritis V, Panayides I, Zomeni Z, et al. The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus. Energy. 2011; 36:5027-36. DOI: 10.1016/j.energy.2011.05.048.
  • [24] Luo J, Rohn J, Bayer M, Priess A, Wilkmann L, Xiang W. Heating and cooling performance analysis of a ground source heat pump system in Southern Germany. Geothermics. 2015;53:57-66. DOI: 10.1016/j.geothermics.2014.04.004.
  • [25] Sivasakthivel T, Murugesan K, Kumar S, Hu P, Kobiga P. Experimental study of thermal performance of a ground source heat pump system installed in a Himalayan city of India for composite climatic conditions. Energy Build. 2016;131:193-206. DOI: 10.1016/j.enbuild.2016.09.034.
  • [26] Sivasakthivel T, Philippe M, Murugesan K, Verma V, Hu P. Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications. Renew Energy. 2017; 113:1168-81. DOI: 10.1016/j.renene.2017.06.098.
  • [27] Zhai X, Cheng X, Wang R. Heating and cooling performance of a mini type ground source heat pump system. Appl Therm Eng. 2017;111:1366-70. DOI: 10.1016/j.applthermaleng.2016.03.117.
  • [28] Atwany H, Hamdan MO, Abu-Nabah BA, Alami AH, Attom M. Experimental evaluation of ground heat exchanger in UAE. Renew Energy. 2020;159:538e546. DOI: 10.1016/j.renene.2020.06.073.
  • [29] Naicker SS, Rees SJ. Long-term high frequency monitoring of a large borehole heat exchanger array. Renew Energy. 2020;145:1528-42. DOI: 10.1016/j.renene.2019.07.008.
  • [30] Spitler J, Bernier M. Vertical borehole ground heat exchanger design methods. Ch. 2. In: Rees SJ, editor. Advances in Ground-Source Heat Pump Systems. Oxford: Woodhead Publishing; 2016: 29-61. DOI: 10.1016/B978-0-08-100311-4.00002-9.
  • [31] Kasuda T, Archenbach P. Earth temperature and thermal diffusivity at selected stations in the United States. Ashrae Trans. 1965;71(1). DOI: 10.6028/nbs.rpt.8972.
  • [32] Nian Y, Cheng W. Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. Appl Therm Eng. 2018;140:733-44. DOI: 10.1016/j.applthermaleng.2018.05.086.
  • [33] Yu X, Li H, Yao S, Nielsen V, Heller A. Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger. Renew Energy. 2020;152:189-97. DOI: 10.1016/j.renene.2020.01.044.
  • [34] Wang C, Li H, Huang Z, Lu Y, Huang X, Gan L. A new heat transfer model for single U-pipe ground heat exchanger. Appl Therm Eng. 2019;154:400-6. DOI: 10.1016/j.applthermaleng.2019.03.115.
  • [35] Mihalakakou G, Santamouris M, Lewis J, Asimakopoulos D, Argiriou A. On the ground temperature below buildings. Solar Energy. 1995;55(5):355-62. DOI: 10.1016/0038-092X(95)00060-5.
  • [36] Ghoreish-Madiseh S, Kuyuk A, de Brito MAR. An analytical model for transient heat transfer in ground-coupled heat exchangers of closed-loop geothermal systems. Appl Therm Eng. 2019;150:696-705. DOI: 10.1016/j.applthermaleng.2019.01.020.
  • [37] Lin J. On the force-restore method for prediction of ground surface temperature. J Geophysic Res. 1980;85:3251-4. DOI: 10.1029/JC085iC06p03251.
  • [38] Olfmana MZ, Woodburya DA, Bartley J. Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media. Geotermics. 2014;51:9-30. DOI: 10.1016/j.geothermics.2013.10.002.
  • [39] Saskia MM, Wallin E. Ground temperature profiles and thermal rock properties at Wairakei, New Zealand. Renew Energy. 2012;43:313-21. DOI: 10.1016/j.renene.2011.11.032.
  • [40] Esen H, Inalli M, Esen Y. Temperature distributions in boreholes of a vertical ground-coupled heat pump system. Renew Energy. 2009;34(12):2672-9. DOI: 10.1016/j.renene.2009.04.032.
  • [41] Beier RA, Acuña J, Mogensen P, Palm B. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics. 2014;51:470-82. DOI: 10.1016/j.geothermics.2014.02.006.
  • [42] Rybach L, Eugster WJ. Sustainability aspects of geothermal heat pump operation, with experience from Switzerland. Geothermics. 2010;39:365-9. DOI: 10.1016/j.geothermics.2010.08.002.
  • [43] Rybach L, Sanner B. Ground-source heat pump systems the European experience. GHC Bull. 2000;21(1):16-26. Available from: http://sanner-online.de/media/art4.pdf.
  • [44] Ma ZD, Jia GS, Cui X, Xia ZH, Zhang YP, Jin LW. Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer. Appl Energy. 2020;276:115453. DOI: 10.1016/j.apenergy.2020.115453.
  • [45] Michalski A, Klitzsch N. First field application of temperature sensor modules for groundwater flow detection near borehole heat exchanger. Geotherm Energy. 2019;7:37. DOI: 10.1186/s40517-019-0152-5.
  • [46] Adamovský D, Neuberger P, Adamovský R. Results of operational verification of vertical ground heat exchangers. Energy Build. 2017;152:185-93. DOI: 10.1016/j.enbuild.2017.07.015.
  • [47] Han C, Bill X. Performance of a residential ground source heat pump system in sedimentary rock formation. Appl Energy. 2016;164:89-98. DOI: 10.1016/j.apenergy.2015.12.003.
  • [48] Łapa M. Projekt wykonawczy. Przebudowa budynku WBiIŚ Politechniki Białostockiej wraz z budową wewnętrznej instalacji monitoringu w ramach projektu „Poprawa efektywności energetycznej infrastruktury PB z wykorzystaniem odnawialnych źródeł ciepła”. Zakres: budowa instalacji pomp ciepła. [Executive project. Reconstruction of the WBiIŚ building of the Bialystok University of Technology together with the construction of an internal monitoring installation under the project “Improving the energy efficiency of the PB infrastructure using renewable heat sources”, Scope: construction of the heat pump installation]. Developed by design Office Technika Grzewcza SOLARSYSTEM, Myślenice, 2014.
  • [49] Bigaj Z. Projekt robót geologicznych na wykonanie otworów wiertniczych w celu wykorzystania ciepła z ziemi. [Project of geological works for drilling boreholes to use heat from the earth]. Hydrogeological company PANGEA; Chrzanów: 2013.
  • [50] Jarmoc W. Projekt techniczny wielopunktowego systemu pomiaru i monitoringu temperatury. [Technical design of the multi-point temperature measurement and monitoring system]. Elektrokomplex company; Białystok: 2014.
  • [51] Available from: https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetycznabudynkow/dane-do-obliczen-energetycznych-budynkow-1 (Białystok ISO STAT. TXT) (accessed 22.06.2020).
  • [52] Krogulec E, Wierchowiec J. Mapa geologiczno-gospodarcza w skali 1 : 50 000, arkusz Białystok (339). [Geological and economic map in scale 1:50,000, sheet Bialystok (339)]. Developed by: PIG:2007.
  • [53] PN-EN 14511-4:2018-08 Air conditioners, liquid chillers and heat pumps for heating and cooling, and industrial process chillers, with electrically driven compressors - Part 4: Requirements. Available from: https://sklep.pkn.pl/pn-en-14511-4-2018-08e.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58e10b26-ba7e-4edf-b176-eaf648c55721
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.