PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of InGaN waveguide on injection efficiency in III-nitride laser diodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of using InGaN waveguides on blue laser diodes was theoretically studied using 1D drift diffusion model and 2D optical mode calculation. Despite of the known effect of increased confinement of an optical mode, especially for long wavelengths, an unexpected influence on the efficiency of carrier injection into the active region is discussed. It is found that InGaN-AlGaN interface is crucial to achieving high injection efficiency. A numerical model is created, which describes the influence of InGaN waveguide and Mg doping of electron blocking layer on basic properties of laser diodes. It is found that an increase of injection efficiency allows to reduce the doping level in an electron blocking layer and take advantage of decreased optical losses.
Słowa kluczowe
Czasopismo
Rocznik
Strony
311--321
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics “Unipress”, PAS, Sokołowska 29/37, 01-142 Warsaw, Poland
Bibliografia
  • [1] WIERER J.J., TSAO J.Y., SIZOV D.S., Comparison between blue lasers and light-emitting diodes for future solid-state lighting, Laser and Photonics Reviews 7(6), 2013 pp. 963–993, DOI:10.1002/lpor.201300048.
  • [2] KAWAGUCHI M., IMAFUJI O., NOZAKI S., HAGINO H., TAKIGAWA S., KATAYAMA T., TANAKA T., Optical-loss suppressed InGaN laser diodes using undoped thick waveguide structure, Proceedings of SPIE 9748, 2016, article 974818, DOI:10.1117/12.2212011.
  • [3] ZHANG L.Q., JIANG D.S., ZHU J.J., ZHAO D.G., LIU Z.S., ZHANG S.M., YANG H., Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green, Journal of Applied Physics 105(2), 2009, article 023104, DOI:10.1063/1.3068182.
  • [4] MUZIOL G., TURSKI H., SIEKACZ M., SAWICKA M., WOLNY P., PERLIN P., SKIERBISZEWSKI C., Determination of gain in AlGaN cladding free nitride laser diodes, Applied Physics Letters 103(6), 2013, article 061102, DOI:10.1063/1.4817754.
  • [5] LERMER T., SCHILLGALIES M., BREIDENASSEL A., QUEREN D., EICHLER C., AVRAMESCU A., MULLER J.,SCHEIBENZUBER W., SCHWARZ U., LUTGEN S., STRAUSS U., Waveguide design of green InGaN laserdiodes, Physica Status Solidi (A) 207(6), 2010, pp. 1328–1331, DOI:10.1002/pssa.200983410.
  • [6] STRAUSS U., EICHLER C., RUMBOLZ C., LELL A., LUTGEN S., TAUTZ S., SCHILLGALIES M., BRÜNINGHOFF S., Beam quality of blue InGaN laser for projection, Physica Status Solidi (C) 5(6), 2008, pp. 2077–2079, DOI:10.1002/pssc.200778417.
  • [7] HUANG C., LIN Y., TYAGI A., CHAKRABORTY A., OHTA H., SPECK J.S., DENBAARS S.P., NAKAMURA S., Optical waveguide simulations for the optimization of InGaN-based green laser diodes, Journal of Applied Physics 107(2), 2010, article 023101, DOI:10.1063/1.3275325.
  • [8] MUZIOL G., TURSKI H., SIEKACZ M., WOLNY P., GRZANKA S., GRZANKA E., PERLIN P., SKIERBISZEWSKI C., Enhancement of optical confinement factor by InGaN waveguide in blue laser diodes grown by plasma-assisted molecular beam epitaxy, Applied Physics Express 8(3), 2015, article 032103, DOI:10.7567/APEX.8.032103.
  • [9] CHEN P., FENG M.X., JIANG D.S., ZHAO D.G. LIU Z.S., LI L., WU L.L., LE L.C., ZHU J.J., WANG H., ZHANG S.M., YANG H., Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer, Journal of Applied Physics 112(11), 2012, article 113105, DOI:10.1063/1.4768287.
  • [10] MUZIOL G., TURSKI H., SIEKACZ M., GRZANKA S., PERLIN P., SKIERBISZEWSKI C., Elimination of leak-age of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide, Applied Physics Express 9(9), 2016, article 092103, DOI:10.7567/APEX.9.092103.
  • [11] KIOUPAKIS E., RINKE P., SCHLEIFE A., BECHSTEDT F., VANDE WALLE C.G., Free-carrier absorption in nitrides from first principles, Physical Review B 81(24), 2010, article 241201(R), DOI:10.1103/PhysRevB.81.241201.
  • [12] UCHIDA S., TAKEYA M., IKEDA S., MIZUNO T., FUJIMOTO T., MATSUMOTO O., GOTO S., TOJYO T., IKEDA M., Recent progress in high-power blue-violet lasers, IEEE Journal of Selected Topics in Quantum Electronics 9(5), 2003, pp. 1252–1259, DOI:10.1109/JSTQE.2003.820910.
  • [13] KURAMOTO M., SASAOKA C., FUTAGAWA N., NIDO M., YAMAGUCHI A.A., Reduction of internal loss and threshold current in a laser diode with a ridge by selective re‐growth (RiS‐LD), Physica Status Solidi (A) 192(2), 2002, pp. 329–334, DOI:10.1002/1521-396X(200208)192:2%3C329::AID-PSSA329%3E3.0.CO;2-A.
  • [14] SiLENSe 5.4 package, http://str-soft.com/products/SiLENSe/ (accessed October 12, 2019).
  • [15] CAMFR (CAvity Modelling FRamework), http://camfr.sourceforge.net (accessed October 12, 2019).
  • [16] HAJDEL M., MUZIOL G., NOWAKOWSKI-SZKUDLAREK K., SIEKACZ M., FEDUNIEWICZ-ŻMUDA A., WOLNY P., SKIERBISZEWSKI C., Influence of electron blocking layer on properties of InGaN-based laser diodes grown by plasma-assisted molecular beam epitaxy, Acta Physica Polonica A 136(4), 2019, pp. 593–597, DOI:10.12693/APhysPolA.136.593.
  • [17] MUZIOL G., HAJDEL M., SIEKACZ M, SZKUDLAREK K, STANCZYK S., TURSKI H., SKIERBISZEWSKI C., Optical properties of III-nitride laser diodes with wide InGaN quantum wells, Applied Physics Express 12(7), 2019, article 072003, DOI:10.7567/1882-0786/ab250e.
  • [18] MUZIOL G., TURSKI H., SIEKACZ M., SZKUDLAREK K., JANICKI L., BARANOWSKI M., ZOLUD S., KUDRAWIEC R., SUSKI T., SKIERBISZEWSKI C., Beyond quantum efficiency limitations originating from the piezoelectric polarization in light-emitting devices, ACS Photonics 6(8), 2019, pp. 1963–1971, DOI:10.1021/acsphotonics.9b00327.
  • [19] LE L.C., ZHAO D.G., JIANG D.S., CHEN P., LIU Z.S., YANG J., HE X.G., LI X.J., LIU J.P., ZHU J.J., ZHANG S.M., YANG H., Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes, Optics Express 22(10),2014, pp. 11392–11398, DOI:10.1364/OE.22.011392.
  • [20] HOLEC D., COSTA P.M.F.J., KAPPERS M.J., HUMPHREYS C.J., Critical thickness calculations for InGaN/GaN, Journal of Crystal Growth 303(1), 2007, pp. 314–317, DOI:10.1016/j.jcrysgro.2006.12.054.
  • [21] LEYER M., STELLMACH J., MEISSNER CH., PRISTOVSEK M., KNEISSL M., The critical thickness of InGaNon (0 0 0 1) GaN, Journal of Crystal Growth 310(23), 2008, pp. 4913–4915, DOI:10.1016/j.jcrysgro.2008.08.021.
  • [22] MEHARI S., COHEN D.A., BECERRA D.L., NAKAMURA S., DENBAARS S.P., Semipolar InGaN blue laser diodes with a low optical loss and a high material gain obtained by suppression of carrier accumulation in the p-waveguide region, Japanese Journal of Applied Physics 58(2), 2019, article 020902, DOI:10.7567/1347-4065/aaf4b4.
  • [23] COLDREN L.A., CORZINE S.W., MAŠANOVIĆ M.L., Diode Lasers and Photonic Integrated Circuits, Second Edition, Wiley, 2012, pp. 45–246, DOI:10.1002/9781118148167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58dffd1d-89d0-41ec-8a86-d769e1636bf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.