Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to investigate the metallographic structure and the impact of the heat treatment process on the MAR-M247 superalloy, a high-temperature nickel-based superalloy commonly used in turbine blades. The heat treatment process can potentially influence the mechanical properties of the MAR-M247 superalloy at different temperatures. A strength simulation analysis of gas turbine blades should include the variations in the mechanical properties of the material. The effect of heat treatment on grain size was investigated by metallographic experiments, and numerical calculations of material mechanical properties were conducted. The mechanical property parameters necessary for finite element analysis of turbine blades were determined. Finally, a finite element simulation model of the blade was established based on these mechanical property parameters, and strength analysis was performed. The simulation results provided the stress distribution and the strength of the turbine blade.
Wydawca
Czasopismo
Rocznik
Tom
Strony
189--196
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab.
Twórcy
autor
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, P.R. China
autor
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049, P.R. China
autor
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049, P.R. China
autor
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, P.R. China
autor
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, 100044, P.R. China
Bibliografia
- [1] L. Han, P. Li, S. Yu, et al., Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism. International Journal of Fatigue 154, 106558 (2022). DOI: https://doi.org/10.1016/j.ijfatigue.2021.106558
- [2] X. Li, W. Li, M. Lashari, et al., Fatigue failure behavior and strength prediction of nickel-based superalloy for turbine blade at elevated temperature. Engineering Failure Analysis 136, 106191 (2022). DOI: https://doi.org/10.1016/j.engfailanal.2022.106191
- [3] D. Ma, Novel casting processes for single-crystal turbine blades of superalloys. Frontiers of Mechanical Engineering 13 (1), 3-16 (2018). DOI: https://doi.org/10.1007/s11465-018-0475-0
- [4] C. Zhang, P. Wang, Z. Wen, et al., Study on creep properties of nickel-based superalloy blades based on microstructure characteristics. Journal of Alloys and Compounds 890, 161710 (2022). DOI: https://doi.org/10.1016/j.jallcom.2021.161710
- [5] G. Salwan, R. Subbarao, S. Mondal, et al., Comparison and selection of suitable materials applicable for gas turbine blades. Materials Today: Proceedings 46 (17), 8864-8870 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.05.003
- [6] G. Erickson, The development and application of CMSX-10. Superalloys 1, 35-44 (1996). DOI: https://doi.org/10.7449/1996/superalloys_1996_35_44
- [7] R. Baldan, R. Rocha, R. Tomasiello, et al., Solutioning and aging of Mar-M247 nickel-based superalloy. Journal of Materials Engineering and Performance 22 (9), 2574-2579 (2017). DOI: https://doi.org/10.1007/s11665-016-2462-0
- [8] N. Wan, M. Kang, N. Jung, et al., Failure analysis of the defect-induced blade damage of a compressor in the gas turbine of a cogeneration plant. International Journal of Precision Engineering and Manufacturing 13 (5), 717-722 (2012). DOI: https://doi.org/10.1007/s12541-012-0093-4
- [9] L. Sink, Development of low-cost directionally-solidified turbine blades, Mechanical Engineering (1980).
- [10] L. Xing, L. Ke-An, T. Jia-Shi, et al., Analysis of Strength and Stiffness for Heavy-duty Gas Turbine Casing. Turbine Technology 53 (2), 85-88 (2011). DOI: https://doi.org/10.1016/j.matpr.2021.05.003
- [11] G. Chen, J. Fan, S. Dong, et al., Strength uncertainty analysis of composite turbine blade with small sample size. Structures 6 (33), 1158-1179 (2021). DOI: https://doi.org/10.1016/j.istruc.2021.04.059
- [12] H. Lin, H. Geng, X. Zhou, et al., High cycle fatigue analysis of third stage blade based on shroud gap effect. IEEE International Conference on Mechatronics and Automation 6, 1781 (2016). DOI: https://doi.org/10.1109/ICMA.2016.7558834
- [13] M. Reddy, P. Peyyala, S. Kaleru, et al., Analysis of gas turbine blade using finite element method. Proceedings of the 1st international conference on frontier of digital technology towards a sustainable society (2023). DOI: https://doi.org/10.1063/5.0116969.
- [14] D. Boismier, A. Huseyin, ThermoMechanical Fatigue of Mar-M247: Part 1-Experiments. Journal of Engineering Materials & Technology 112 (1), 175-179 (1990). DOI: https://doi.org/10.1115/1.2903189
- [15] G. Salwan, R. Subbarao, S. Mondal, Comparison and selection of suitable materials applicable for gas turbine blades. Materials Today: Proceedings 46 (17), 8864-8870 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.05.003
Uwagi
This work was supported by the Fundamental Research Funds for the Central Universities (No: 2022JBZY028) and National Program on Key Basic Research Projects of China (No: 2013CB03570401).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58de41cc-3961-4d64-904e-0468d269adad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.