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INTRODUCTION

At least 2.2 billion people worldwide have a vi-
sion impairment or blindness [1]. The number of 
blind and visually impaired people is still increas-
ing.  Braille is a universal tactile writing system 
used by the blind in which a three-dimensional, 3D, 
dot-based script allows reading characters without 
the use of light or the sense of sight. Unlike clas-
sical writing, individual alphabet characters are 
convex and can be read by touching the fingertips. 
Louis Braille (1809–1852) invented the writing 
system that bears his name, the Braille or the Braille 
writing system [2]. This system could be “read” by 
touching with fingers [3]. In Braille, the sign com-
prises up to six dots arranged in two columns and 
three rows, corresponding to the appropriate letters 
or other characters [4]. By combining one or more 
dots in various positions, 64 combinations can be 
designed, creating letters, numbers, punctuation, 

mathematics characters, etc. [5]. According to the 
European Union directive, all pharmaceutical prod-
ucts must be labelled with Braille since 2005 [6]. 
Braille can be printed in several ways. The most 
common way is to emboss Braille dots on card-
board or paper of higher grammar. This method 
requires the preparation of an embossing matrix for 
each industrial product. Less often, other printing 
techniques are used for Braille labelling, i.e., screen 
printing and digital printing [7, 8]. Digital printing 
can be used for “short runs” because only a digital 
file must be prepared without preparing an emboss-
ing matrix or screen for a single pattern. UV ink-
jet printing can print small elements such as Braille 
dots [9]. For short or single personalized runs, vari-
ous 3D printing can be adapted. 

Additive manufacturing, AM, has advanced 
rapidly in recent years [10]. AM can be divided 
into groups depending on the type of material 
used, the initial state of aggregation, the method of 
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creating subsequent print layers, and the method 
of hardening the model. It is important to note that 
“3D printing” is more widely used for processes 
where polymers are building materials, while AM 
is more often for those with metals or ceramics 
[11]. However, AM methods aim to transfer 3D 
digital [i.e., CAD] models by layer-by-layer ma-
terial deposition [12, 13], allowing the develop-
ment of spatial objects. Initially, due to its inac-
curacy, 3D printing was treated as a method of 
producing low-quality prototypes and molds for 
further production. According to the American 
Society for Testing and Materials (ASTM), there 
are seven categories of AM [12]. One of them is 
material extrusion, MEX, one of the most widely 
used additive technologies [13]. The most popu-
lar and available from MEX technologies is Fused 
Deposition Modelling, FDM. This process is char-
acterized by extruding material from the nozzle 
layer by layer. The solid material as a filament is 
heated to melting temperature, extruded through 
the nozzle in the liquid state, and then cooled 
down. Among many various polymers for FDM 
3D printing, most polylactide, PLA, is used due 
to its low cost, easiness of printing, and unique 
properties, such as higher density in comparison 
to the typical plastics [14, 15], low shrinkage [16], 
suitable thermal and rheological properties [17], 
biodegradability and biocompatibility [18]. 

With the development and improvement of 3D 
techniques, due to versatility, flexibility, and cus-
tomizability, 3D printing has been found in many 
applications in various sectors of industry: aero-
space, construction, food packaging, automobile, 
biomedical, etc. [19]. For example, 3D printing 
is successfully used for prostheses [20–22], tis-
sues [21–26], patient-specific implants [27–29], 
music [30], sports [30], and even jewelry [31]. It 
is also worth mentioning that various AM tech-
nologies have been found to be applicable during 
the COVID-19 pandemic for fabrications of face 
shield and mask elements, valves, nasopharyn-
geal swabs, etc. [32].

3D printing can be successfully utilized for 
developing different 3D objects for the blind and 
visually impaired, for example, 3D tactile maps [8, 
27, 33], cultural heritage objects by [34–37], tablets 
with Braille patterns [38,39], Braille-encoded intra-
oral films [40]. Furthermore, 3D printing can be ap-
plied in modern and innovative teaching of the blind 
and visually impaired, whereas 3D tactile objects 
improve teaching effectiveness [41–44]. Stangl et 
al. designed a 3D-printed tactile picture book based 

on a classic book for children with visual impair-
ments [45]. Finally, relief models of artworks can 
be developed with various 3D techniques to im-
prove the accessibility to art [46]. Additionally, 3D 
printing can successfully create prenatal models for 
blind and visually impaired expectant parents [47]. 
Last but not least, to print Braille for the blind and 
visually impaired, various 3D printing techniques 
can be applied, for instance, FDM, digital light 
processing, and PolyJet technologies [48]. Li et al. 
printed Braille plates using Chinese braille rules to 
develop puzzles for beginners to study Braille. Li et 
al. have noticed that the dot size error of elements 
printed by FDM is very large [48].

The work aims to apply FDM 3D printing 
technology for Braille printing for the blind to 
help with everyday functioning use. Nowadays, 
FDM 3D printers are easy to buy and cheap; the 
printer and filament prices start at around $200 
and $25, respectively. FDM printers are low-cost 
and available compared to other AM methods and 
can be used in offices or homes. Hence, FDM 
printers can be easily adapted to prepare custom-
ized plates with signs for the blind and visually 
impaired. At the same time, paper and home of-
fice printers for printing Braille are much more 
expensive than an FDM filament and mid-range 
3D printer. Furthermore, the price of customized 
information plates or labels with Braille signs 
starts at around 15$. The production of 3D-print-
ed labels is less expensive. 

It is crucial to prepare the blind and visually 
impaired in an environment where they can feel 
safe and access the required information. To our 
knowledge, no one has reported the quality analy-
sis of Braille dots obtained using FDM printing 
technology compared to the Braille dots standard. 
The inscriptions must be readable for the blind 
and visually impaired and fulfill specific criteria. 
The study shows the process of creating a 3D 
model and assessing its quality. Firstly, a 3D mod-
el design using CAD software was created. Then, 
the design was exported to STL (standard triangle 
language) format. The model was 3D printed by 
FDM, and finally, the quality of the overprinted 
product and Braille dots was performed.

MATERIALS AND METHODS

The prints were performed with PLA (Poly-
lactide, Filament PM, Chudobín, Czech Republic) 
and PET-G (Polyethylene Terephthalate Glycol, 
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Spectrum, Pęcice, Poland) filaments. White PLA 
(Filament PM, Chudobín, Czech Republic) was 
used for final printing. The filaments were used as re-
ceived. The filament properties are listed in Table 1. 

The model was designed using Autodesk 
Fusion 360 (San Francisco, CA, United States). 
Before printing the final model suitable for fur-
ther research, preliminary test prints were made 
to determine the selected parameters’ correctness. 
The prints were printed with Ender 3 Pro (Cre-
ality-3D, Shenzhen, China) and Prusa i3 MK2S 
(Prusa Research, Prague, Czech Republic). The 
final printing was performed with Prusa i3 MK2S 
(Prusa Research, Prague, Czech Republic) ac-
cording to the printing conditions in Table 2.

Samples of printed Braille dots were evalu-
ated with Braille Dot Checker (BOBST, Mex, 
Switzerland). The measurements were performed 
according to the DIN EN 15823 standard [49]. 
For each dot, the dot diameter and dot height 
were measured. Additionally, the dot spacing was 
determined. The dots and the plate surface were 
observed with a digital microscope (Keyence 
VHX-7000, Japan) equipped with a VH-Z100R 
objective. The surface roughness, Ra and Rz, was 
analyzed at magnification 1000×. 

SEM (JOEL JCM-7000) was applied to ob-
serve the surface structure of dots. The samples 
approx. 1 × 1 cm with a Latin and Braille later 
were fixed on the table with double-sided con-
ductive adhesive. Then, they were covered with a 
thin layer of gold for SEM image determination. 
SEM images were received at an acceleration 
voltage of 15 kV.

DESIGN OF 3D PRINTING MODEL

The Braille alphabet has a form of small dots 
with specific dimensions. According to Article 
54, the EU directive states that the name of a me-
dicinal product must be expressed in Braille on 

the packaging [6]. The height and base diameter 
should meet specific technological standards so 
that texts labeled using Braille are legible to all 
blind people and do not show significant differ-
ences depending on the place of the production 
or manufacturer. The European and North Ameri-
can standards for pharmaceutical packaging and 
labeling recommend Marburg Medium font for 
pharmaceutical packaging and labeling [50]. In 
this work, we have used Poland Braille Fonts, 
which the Polish Association of the Blind rec-
ommends for small pharmaceutical packaging. 
The parameters of the Poland Braille Font allow 
for saving up to 10‒12 percent less space on the 
packaging than the Marburg Medium font [51].
(Figure 1) The standard dot sizes and distances 
are listed in Table 3.

DISSCUSION

Printing the Braille alphabet did not cause 
major problems; however, a few attempts were 
made before the final model was overprinted. The 
overprinted Braille dots should meet proper stan-
dards, such as height, diameter, and the distance 
between dots. The final print is shown in Figure 
2a). The initial quality assessment allows us to 

Table 1. Properties of printing material
Property Value

Composition Polylactide Polyethylene terephthalate glycol

Abbreviation PLA PET-G

Filament thickness (mm) 1.75 1.75

Color white, green black

Softening temperature (°C) 55 70

Density (g·cm‒3) 1.24 1.18

Table 2. Printing conditions on Prusa i3 MK2S
Property Value

Nozzle temperature (°C) 215
Table temperature, providing constant 
printing conditions (°C) 60

Nozzle diameter (mm) 0.4

Filament diameter (mm) 1.75

Layer thickness (mm) 0.1

Printing speed 40 mm/s

Fill (%) 15

Time (min) 84 min
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Table 3. Position of Braille dots within a cell, spacing dimensions, dots diameter, and height in mm according to 
Poland Braille Font
 

Position of dots in mm 

 

Dot height 0.5 

Dot down diameter 1.3 
Dot spacing from dot center to dot center 
horizontally or vertically 2.3 

Character spacing from dot center to dot center 5.6 

Cell spacing from dot center to dot center with 
single spacing 9.7 

Line spacing 9.2 

Dot height and diameter reproduction tolerance ± 0.1 

 

Figure 1. The final CAD plate model with the Braille alphabet is (a) the entire plate and (b) a letter model

assume that the print is correct. The edges of the 
tile and the outlines of the Latin letters are sharp 
and clear. Individual Braille dots were reproduced 
correctly, without unintentional contaminations 
and errors. Braille dots and characters can be felt 
with fingertips, and their reception is not disturbed 
by unwanted protrusions, as with test prints. The 
ground surface between the points is smooth. 

The final printing parameters were adapted 
based on trail prints’ results (Figure 2b) and visual 
evaluation. To correctly assess the quality of the 
obtained plate, the size of the entire model was 
measured with a caliper and hand-held microm-
eter, i.e., the plate’s width, height, and thickness. 
The received dimensions were 138.68 mm, 33.71, 
and 2.96 mm for width, height, and thickness, 
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respectively, and differ slightly from those planned 
in the CAD model. This effect might be related to 
the slight shrinkage of PLA [52].

Finally, the correctness of the dimensions of 
the dots obtained on the print was tested. Figure 
3 shows the images of Braille dots taken with 
the Braille Dot Checker. This device allows non-
contact measurement and analyses of the printed 
dots’ mapping, shape, and deformation. 

A visual analysis of Braille dots shows the in-
accuracy of reproducing the shape of the designed 
dots. The overprinted Braille dots are flattened at 
the top and have sharp edges, resembling a trun-
cated cone (see Figure 3a). Under magnification, 

the horizontal lines mark the connection dots of ad-
ditional layers of the PLA material. It is an effect 
resulting from the characteristics of the additive 
3D printing technique. It can be noticed that the 
layers of the print (i.e., the tops of the dots) were 
not perfectly matched to the ones below, which re-
sulted in the next layer of material shifting relative 
to the base and disturbing the rounded shape of the 
dots. For individual dots, it is possible to observe 
dirt and undesirable protruding fragments of mate-
rial known as string, as shown in Figure 3, caused 
by material leaking or dragging from the nozzle 
when moving the print bed between printing sub-
sequent points located at a distance. The captured 

Figure 2. The printed model of Braille alphabet (a) final model; (b) unsuccessful trial printing of designed model

Figure 3. Reproduction of Braille dots (a) correctly, (b) with some contamination and (c) with some 
deformation, (d) embossed dot in cardboard
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photos also show diagonal lines on the surface of 
the substrate between the dots, which indicates 
the rough surface of the tile and low smoothness. 
Some dots did not achieve the round shape typical 
of Braille dots, as shown in Figure 3c. The prop-
erly embossed Braille dot is shown in Figure 3d.

The measurements of dot height, diameter, and 
spacing between dot centers are summarized in 
Table 4. The overprinted model did not achieve the 
estimated height and diameter for dots. The mea-
sured height values of the dots are in the range of 
0.31‒0.43 mm, with an average value of 0.38 ± 0.03 
mm. The diameter measurements range from 0.86 
to 1.14 mm with an average value of 1.0 ± 0.07. The 
overprinted dots do not reach the expected diameter 
value of 1.3 mm. The obtained spacing of the dots 
is in the range of 2.13‒2.28 mm with an average 
of 2.22 ± 0.05 mm and, like other dimensions, is 
smaller than the estimated value of 2.3 mm. All the 
dimensions, except the spacing between the dots, 
have less tolerance, which is acceptable for Braille 
dots, according to Poland Braille Font [51]. 

The surface roughness was assessed by Ra and 
Rz roughness parameters, where Ra indicates the 
average roughness of a surface and Rz is the dif-
ference between the tallest “peak” and the deepest 
“valley” of the surface. The Ra and Rz values were 
1.30 and 6.86 μm, respectively. Figure 4 shows 
the surface profiles of samples determined by a 
digital microscope. The unevenness of the surface 
of the printed plate is visible by the naked eye, 
which is related to the printing process, in which 
layer by layer is applied during the transition line 
of the nozzle with the filament (see Figure 4a).

The microscope observation of dots reveals 
that Braille dots are developed with up to four lay-
ers of material. For example, a dot in the letter “j” 
consists of 4 layers (see Figure 5a), and a dot in 
the letter “z” consists of only two layers (Figure 
5b). The microscopic observation confirmed the 
stringing of additional PLA material (Figure 5c). 
To confirm this observation, SEM micrographs 
were taken (Figure 6). Figure 6b shows the char-
acteristic four layers of PLA in Braille dots with 

Figure 4. Image of the developed base surface using digital microscope at magnification (a) 200×; (b) 1000×

Figure 5. The microscopic images of Braille dots taken and magnification 100× (a) dot in letter “j”, (b) dot in 
letter “z” (c) stringing between dots

Table 4. Measured values of dot height, diameter, and spacing between dot centers
Property Estimated value in mm Value in mm Minimum value in mm

Dot height 0.5 0.38 ± 0.03 0.31

Diameter 1.3 1.00 ± 0.07 0.86

Dot spacing from dot center to dot center 2.3 2.22 ± 0.05 2.13
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some contaminants and stringing of material. Ur-
bas et al. have also confirmed the presence of four 
layers [8]. The plate has characteristics of “lines,” 
which are related to the transition line of the noz-
zle with the filament. The line has a width of 340 
± 11 μm and might be felt with a fingertip. The 
posttreatment (polishing) of dots and plates can 
make the edges of the dots smoother and more 
pleasant to feel, but this requires an additional op-
eration, increases the cost of the label, and may 
not be available to do at home.

CONCLUSIONS

This study aimed to print Braille dots using 
Fused Deposition Modeling 3D printing to assess 
whether FDM technology allows obtaining stan-
dardized and legible prints for blind people. The 
main aspect of using 3D printing for Braille is its 
universality, availability, and low price, allowing 
the production of low-volume prints with short 
runs or single prints on demand without needing 
extensive technical resources or external compa-
nies’ services. The construction of spatial Braille 
dots illustrating the alphabet placed according to 
specifications for Poland Braille Fonts standard 

was prepared. The model was intended to imi-
tate conventional Braille dots, which can be em-
bossed on cardboard. The appropriate parameters 
of FDM 3D printing were adjusted to achieve the 
best possible results on the 3D printer for the of-
fice or home environment. Among the available 
materials, PLA was used due to its ecological na-
ture, low price, and good printability. 

The results show that achieving the estimated 
dimensions of the Braille dot was impossible. Un-
fortunately, the Braille dots were not reproduced 
satisfactorily. Reproducing the curvature shape of 
the dots turned out to be problematic. Ultimate-
ly, the dots should be rounded and their edges 
completely smooth. The points obtained in the 
print resemble truncated cones with sharp edges 
around the upper, flat surface. This effect is relat-
ed to the characteristics of the FDM additive tech-
nology. Obtained shape can negatively affect their 
readability. The enlarged image captured during 
the examination shows horizontal lines indicat-
ing where combining layers are joined. To avoid 
these errors, it might be necessary to use addi-
tional post-processing, e.g., smoothing. However, 
post-processing can negatively affect the dimen-
sions of individual dots. Additionally, undesir-
able “spots” of hardened filament appeared on the 

Figure 6. SEM micrographs of dots: (a) dots in letter “q,” (b) dot with four layers, (c) plate surface with a 
characteristic line, (d) fragment of Latin letter “o”
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printout, creating noticeable surface irregulari-
ties under the fingertip. The entire surface of the 
board is rough to the touch, so additional smooth-
ing would also be required in the post-production 
process to ensure that the reception of the content 
expressed in Braille inscriptions was undisturbed.

Summarizing the results of the overprinted 
model with FDM 3D printing technology, the 
distribution, and location of the Braille can be 
acceptable. Still, the reproduction of their shape, 
curvature, and dimensions was lower than the di-
mension tolerance for Braille dots. However, de-
spite geometrical defects, FDM can be a cheap so-
lution for the blind to develop plates with Braille 
signs on-demand or, in the short run, unique and 
customized, which helps them in life functioning. 
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