PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending, buckling, and forced vibration analyses of nonlocal nanocomposite microplate using TSDT considering MEE properties dependent to various volume fractions of CoFe₂O₄-BaTiO₃

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the bending, buckling, free and forced vibration behavior of a nonlocal nanocomposite microplate using the third order shear deformation theory (TSDT) is presented. The magneto-electro-elastic (MEE) properties are dependent on various volume fractions of CoFe₂O₄-BaTiO₃. According to Maxwell’s equations and Hamilton’s principle, the governing differential equations are derived. These equations are discretized by using Navier’s method for an MEE nanocomposite Reddy plate. The numerical results show the influences of elastic foundation parameters such as aspect ratio, length to thickness ratio, electric and magnetic fields and various volume fractions of CoFe₂O₄-BaTiO₃ on deflection, critical buckling load and natural frequency. The natural frequency and critical buckling load increases with the increasing volume fraction of CoFe₂O₄-BaTiO₃, also the amplitude vibration decreases with an increase in the volume fraction. This model can be used for various nanocomposite structures. Also, a series of new experiments are recommended for future work.
Rocznik
Strony
853—868
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • University of Kashan, Department of Solid Mechanics, Faculty of Mechanical Engineering, Kashan, Iran
autor
  • University of Kashan, Department of Solid Mechanics, Faculty of Mechanical Engineering, Kashan, Iran
Bibliografia
  • 1. Arefi M., 2015, The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers, Smart Structures and Systems, 15, 1345-1362
  • 2. Chen J.Y., Heyliger P.R., Pan E., 2014, Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions, Journal of Sound and Vibration, 333, 4017-4029
  • 3. Du C., Li Y., Jin X., 2014, Nonlinear forced vibration of functionally graded cylindrical thin shells, Thin-Walled Structures, 78, 26-36
  • 4. Ebrahimi F., Nasirzadeh P., 2016, A nonlocal Timoshenko beam theory for vibration analysis of thick nonobeam using differential transform method, Journal of Theoretical and Applied Mechanics, 53, 1041-1053
  • 5. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703-4710
  • 6. Eringen A.C., 2002, Nonlocal Continuum Field Theories, Springer-Verlag, New York
  • 7. Ghorbanpour Arani A., Haghparast E., 2017, Vibration analysis of axially moving carbon nanotubereinforced composite plate under initial tension, Polymer Composites, 38, 4, 814-822
  • 8. Ghorbanpour Arani A., Haghparast E., Baba Akbar Zarei H., 2016, Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field, Physica B: Condensed Matter, 495, 35-49
  • 9. Ghorbanpour Arani A., Rahnama Mobarakeh M., Shams Sh., Mohammadimehr M., 2012, The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder, Journal of Mechanical Science and Technology, 26, 2565-2572
  • 10. Hasani Baferani A., Saidi A.R., Ehteshami H., 2011, Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation, Composite Structures, 93, 1842-1853
  • 11. Karimi M., Haddad H.A., Shahidi A.R., 2015a, Combining surface effects and non-local two variable refined plate theories on the shear/biaxial buckling and vibration of silver nanoplates, IET Micro and Nano Letters, 10, 276-281
  • 12. Karimi M., Mirdamadi H.R., Shahidi A.R., 2015b, Shear vibration and buckling of doublelayer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects, Microsystem Technologies, 23, 1-33
  • 13. Karimi M., Shokrani M.H., Shahidi A.R., 2015c, Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method, Journal of Applied and Computational Mechanics, 1, 122-133
  • 14. Ke L.L., Wang Y.S., 2014, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Acta Mechanical Sinica, 63, 52-61
  • 15. Khan K., Patel B.P., Nath Y., 2014, Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells, Composite Structures, 126, 386-397
  • 16. Lang Z., Xuewu L., 2013, Buckling and vibration analysis of functionally graded magneto-electrothermo-elastic circular cylindrical shells, Applied Mathematical Modelling, 37, 2279-2292
  • 17. Malekzadeh P., Shojaee M., 2013, A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates, Journal of Vibration and Control, doi: 10.1177//1077546313516667
  • 18. Mohammadimehr M., Mohammadi-Dehabadi A.A., Khoddami Maraghi Z., 2017, The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow, Physica B: Condensed Matter, 510, 48-59
  • 19. Mohammadimehr M., Mostafavifar M., 2017, Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT, Composites Part B: Engineering, 94, 253-270
  • 20. Mohammadimehr M., Rousta Navi B., Ghorbanpour Arani A., 2016a, Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT, Composites Part B: Engineering, 87, 132-148
  • 21. Mohammadimehr M., Salemi M., Rousta Navi B., 2016b, Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperaturedependent material properties under hydro-thermo-mechanical loadings using DQM, Composite Structures, 138, 361-380
  • 22. Nguyen T., Nguyen V., Chau-Dinh T., Vo T., Nguyen X., 2016, Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements, Composites Part B, 107, 162-173
  • 23. Nguyen-Xuan H., Rabczuk T., Bordas S., Debongnie J., 2008, A smoothed finite element method for plate analysis, Computer Methods in Applied Mechanics and Engineering, 197, 1184-1203
  • 24. Razavi S., Shooshtari A., 2015, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Composite Structures, 119, 377-384
  • 25. Shokrani M.H., Karimi M., Tehrani M.S., Mirdamadi H.R., 2016, Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method, Journal Brazilian Society of Mechanical Sciences and Engineering, 38, 2589-2606
  • 26. Shooshtari A., Razavi S., 2015, Linear and nonlinear free vibration of a multilayered magnetoelectro-elastic doubly curved shell on elastic foundation, Composite Part B: Engineering, 78, 95-108
  • 27. Sih G.C., Song Z.F., 2002, Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions, Theoretical and Applied Fracture Mechanics, 38, 15-36
  • 28. Sih G.C., Yu H.Y., 2005, Volume fraction effect of magnetoelectroelastic composite on enhancement and impediment of crack growth, Composite Structures, 68, 1-11
  • 29. Sobhy M., 2013, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Composite Structures, 99, 76-87
  • 30. Song Z.F., Sih G.C., 2002, Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials, Theoretical and Applied Fracture Mechanics, 38, 121-139
  • 31. Taylor R.L., Auricchio F., 1993, Linked interpolation for Reissner-Mindlin plate elements: Part II – A simple triangle, International Journal for Numerical Methods in Engineering, 36, 3057-3066
  • 32. Wang K.F., Wang B.L., 2011, Combining effects of surface energy and non-local elasticity on the buckling of nanoplates, Micro and Nano Letters, 6, 941-943
  • 33. Wu C.P. Lu Y.C., 2009, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates, Composite Structures, 90, 363-372
  • 34. Xin L., Hu Z., 2015, Free vibration of simply supported and multilayered magneto-electro-elastic plates, Composite Structures, 121, 344-355
  • 35. Zidour M., Daouadji T.H., Benrahou K.H., Tounsi A., Adda Bedia E.A., Hadji L., 2014, Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory, Mechanics of Composite Materials, 50, 95-104
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58d778d3-696d-4872-9500-26a1f1bd5dc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.