Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of an analysis on the feasibility of using low-alloy medium-carbon steels for the induction surface hardening process in the production of internal components for constant-velocity joints, as an alternative to low-carbon steel components subjected to carburizing. The research results concerning the microstructure analysis, including the stereological characteristics of the ferritic phase of selected grades of low-alloy medium-carbon steels, were used to select the optimal grade recommended for the induction surface hardening process. The next stage of the work involved designing a new structure for the internal components of the constant-velocity joint. The design process took into account requirements related to strength, durability, and wear resistance of the joint components. To verify the correctness of the designed structure, a finite element analysis (CAE) was conducted to assess the distribution of maximum stresses acting on the joint. The CAE analysis allowed for the evaluation of stress distribution in the joint components under operational loads and the identification of any potential critical areas. The CAE analysis results confirmed the correctness of the designed structure and the appropriateness of the chosen material for manufacturing the constant-velocity joint components.
Wydawca
Rocznik
Tom
Strony
362--372
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Aleja Armii Krajowej 19, 42-201 Czestochowa, Poland
- Neapco Europe Sp. z o.o., ul. Kaliska 72, 46-320 Praszka, Poland
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Aleja Armii Krajowej 19, 42-201 Czestochowa, Poland
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Aleja Armii Krajowej 19, 42-201 Czestochowa, Poland
autor
- Institute of Mechanical Engineering, University of Kalisz, ul. Nowy Świat 4, 62-800 Kalisz, Poland
Bibliografia
- 1. Micknass W., Popiol R., Sprenger A. Clutches, gearboxes, drive shafts, and half shafts. WKiŁ, 2009.
- 2. Bedros J., Katarzynski S. Diagnostics of passenger cars. WKiŁ, Warsaw, 1993.
- 3. Wiśniewski K. Passenger cars – technical descriptions and regulatory data. WKiŁ, Warsaw, 1995.
- 4. Hillier V.A.W., Coombes P. Fundamentals of Motor Vehicle Technology, 4th ed.; Nelson Thornes: Cheltenham, UK, 1991.
- 5. Wagner E., Cooney C. Universal Joint and Driveshaft Design Manual; Society of Automotive Engineers: Warrendale, PA, USA, 1979.
- 6. Serveto S., Mariot J.P., Diaby M. Modelling and measuring the axial force generated by tripod joint of automotive drive-shaft. Multibody Syst. Dyn. 2007; 19, 209–226.
- 7. Serveto S., Mariot J.P., Diaby M. Secondary torque in automotive drive shaft ball joints: Influence of geometry and friction. Proc. Inst. Mech. Eng. Part K – J. Multi-Body Dyn. 2008; 222, 215–227.
- 8. Jo G.H., Kim S.H., Kim D.W., Chu C.N. Estimation of generated axial force considering rolling-sliding friction in tripod-type constant velocity joint. Tribol. Trans. 2018; 61, 889–900.
- 9. Kim S.H., Kim D.H., Jo G.H. An experimental and numerical study on reduction of generated axial force. Appl. Sci. 2021; 11, 8836. https://doi.org/10.3390/app11198836
- 10. Santonocito P., Pennestri E. A parametric study of the dynamics of the shudderless tripode joint. In: Proceedings of DETC 2000/MECH-14079, Baltimore, USA, September 10–13, 2000; pp. 1–6.
- 11. Mabie H.H. Constant velocity joints. Machine Design, May 1948; 101–105.
- 12. Durum M.M. Kinematic properties of tripode joints. ASME Journal of Engineering for Industry 1975; 708–713.
- 13. Akbil E., Lee T.W. On the motion characteristics of tripode joints. Part 1: General case, Part 2: Applications. ASME Journal of Mechanisms, Transmissions and Automation in Design 1984; 106, 228–234 and 235–241.
- 14. Ismail R., Prasetyo D.I., Tauviqirrahman M., Yohana E., Bayuseno A.P. Induction hardening of carbon steel material: The effect of specimen diameter. AMR 2014; 911, 210–214. https://doi.org/10.4028/www.scientific.net/amr.911.210
- 15. Coupard D., Palin-Luc T., Bristiel P. Residual stresses in surface induction hardening of steels: Comparison between experiment and simulation. Mater. Sci. Eng. A 2008; 487, 328–339.
- 16. Srivastava A., Jain A., Rajput S., Singh H.O., Kandpal B.C., Yadav M., Varshney S., Johri N. Structural and FEM analysis of heat treatment effects on mild steel. Materials Today: Proceedings 2021; 46(20), 11064–11071. https://doi.org/10.1016/j.matpr.2021.02.204
- 17. Garois S., Daoud M., Chinesta F. Explaining hardness modeling with XAI of C45 steel spur-gear induction hardening. Int. J. Mater. Form. 2023; 16, 57. https://doi.org/10.1007/s12289-023-01780-1
- 18. Seherr-Thoss H.Cr., Schmelz F., Aucktor E. Universal Joints and Driveshafts: Analysis, Designs, Applications, 2nd enlarged ed., translated by J.A. Tipper and S.J. Hill. Springer-Verlag: Berlin Heidelberg, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58d52dbc-10ab-4380-a320-e96f17621aaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.