PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Cooling Rate on Mechanical Properties of New Multicomponent Fe-Based Amorphous Alloy During Annealing Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fe-based bulk metallic glasses (BMGs) have been extensively investigated due to their ultrahigh strength and elastic moduli as well as desire magnetic properties. However, these BMGs have few applications in industrial productions because of their brittleness at room temperature. This study is focused on the effect of cooling rate on the mechanical properties (especially toughness) in the Fe41Co7Cr15Mo14Y2C15B6 BMG. For this aim, two samples with the mentioned composition were fabricated in a water-cooled copper mold with a diameter of 2 mm, and in a graphite mold with a diameter of 3 mm. The formation of crystalline phases of Fe23(B,C)6, α-Fe and Mo3Co3C based on XRD patterns was observed after the partial crystallization process. To determine the toughness of the as-cast and annealed samples, the indentation technique was used. These results revealed that the maximum hardness and toughness were depicted in the sample casted in the water-cooled copper mold and annealed up to 928°C. The reason of it can be attributed to the formation of crystalline clusters in the amorphous matrix of the samples casted in the graphite mold, so that this decrease in the cooling rate causes to changing the chemical composition of the amorphous matrix.
Twórcy
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
autor
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  • Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Bibliografia
  • [1] H. Jiang, T. Shang, H. Xian, B. Sun, Q. Zhang, Q. Yu et al., Small Struct. 2000057 (2020).
  • [2] W. Yang, Q. Wang, W. Li, L. Xue, H. Liu, J. Zhou et al., Mater. Des. 161, 136-46 (2019).
  • [3] L. Liu, C. Zhang, Thin Solid Films 561, 70-86 (2014).
  • [4] P. Pietrusiewicz, M. Nabiałek, B. Jeż, Materials (Basel) 13, 4962 (2020).
  • [5] M. Nabiałek, B. Jeż, K. Błoch, J. Gondro, K. Jeż, A.V. Sandu, P. Pietrusiewicz, J. Alloys Compd. 820, 153420 (2020)
  • [6] W. Guo Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying et al., J. Therm. Spray Technol. 23, 1157-80 (2014).
  • [7] B.S. Oliveira, D.H. Milanez, D.R. Leiva, L.I.L. Faria, W.J. Botta, C.S. Kiminami, Mater. Res. 20, 89-95 (2017).
  • [8] Y. Han, F.L. Kong, F.F. Han, A. Inoue, S.L. Zhu, E. Shalaan et al. Intermetallics 76, 18-25 (2016).
  • [9] A. Hitit, H. Şahin, Metals (Basel) 7, 7 (2016).
  • [10] P.H. Tsai, C.I. Lee, S.M. Song, Y.C. Liao, T.H. Li, J.C. Jang et al., Coatings 10, 1212 (2020).
  • [11] V. Keryvin, V.H. Hoang, J. Shen, Intermetallics 17, 211-7 (2009).
  • [12] J. Zhou, Q. Wang, X. Hui, Q. Zeng, Y. Xiong, K. Yin et al., Mater. Des. 191, 108597 (2020).
  • [13] A. Masood, V. Ström, L. Belova, K.V. Rao, J.J. Ågren, Appl. Phys. 113, 013505 (2013).
  • [14] S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coatings Technol. 167, 113-9 (2003).
  • [15] Z. Jaafari, A. Seifoddini, S. Hasani, Metall. Mater. Trans. A 50, 2875-85 (2019).
  • [16] Z. Dan, Y. Yamada, Y. Zhang, M. Nishijima, N. Hara, H. Matsumoto et al., Mater. Trans. 54, 561-5 (2013).
  • [17] A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, J. Appl. Phys. 105, 07A308 (2009).
  • [18] S. Wang, W. Jiang, H. Hu, P. Liu, J. Wu, B. Zhang, Prog. Nat. Sci. Mater. Int. 27, 503-6 (2017).
  • [19] P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, J. Alloys Compd. 738, 197-205 (2018).
  • [20] S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, Metall. Mater. Trans. A 50, 63-71 (2019).
  • [21] H. Redaei, P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, Acta Phys. Pol. A 138, 265-7 (2020).
  • [22] P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, J. Non-Crystalline Solids 471, 286-294 (2017).
  • [23] P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, Thermochimica Acta 652, 119-125 (2017).
  • [24] S. Hasani, P. Rezaei-Shahreza, A. Seifoddini, Thermal Analysis and Calorimetry 143, 3365-3375 (2021).
  • [25] P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchem. Ein Lehrb., Berlin, Heidelberg: Springer Berlin Heidelberg, 387-409 (1912).
  • [26] T. Gloriant, M. Gich, S. Suriñach, M.D. Baró, A.L. Greer, J. Metastable Nanocrystalline Mater. 8, 365-70 (2000).
  • [27] S. Cardinal, J.M. Pelletier, M. Eisenbart, U.E. Klotz, Mater. Sci. Eng. A 660, 158-65 (2016).
  • [28] S. Enzo, S. Polizzi, A. Benedetti, Zeitschrift Für Krist 170, 275-87 (1985).
  • [29] V. Keryvin, X.D. Vu, V.H. Hoang, J. Shen, J. Alloys Compd. 504, S41-4 (2010).
  • [30] H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, R.J. Dowding, Philos. Mag. Lett. 86, 333-45 (2006).
  • [31] G.R. Antist, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533-8 (1981).
  • [32] Y. He, G.J. Shiflet, S.J. Poon, Acta Metall. Mater. 43, 83-91 (1995).
  • [33] C. Suryanarayana, Mater. Today 15, 486-98 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58d370ef-72a1-49c6-83cd-99cf2eabab9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.