PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical Aspects of the Work of Passenger Car Brake Linings. Part 2. The Effect of Lubricating Additives

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fizykochemiczne aspekty pracy okładzin hamulcowych samochodów osobowych. Cz. 2. Wpływ dodatków smarnych
Języki publikacji
EN
Abstrakty
EN
The paper presents the influence of various systems of lubricating additives which determine the performance of the friction materials of brake linings. The base hybrid friction material formulation was modified with various types of lubricating additives. These additives are divided into groups containing commonly used lubricating materials: carbons and sulphides, compounded in various proportions, influencing the formation and structure of the so-called third body layer (TBL) on the surface of the brake disc because of braking. Raman Spectroscopy (RS), time of flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and high-resolution scanning electron microscopy with an X-ray analyser (SEM-EDS) equipped with a focus ion beam (FIB) were used for chemical and morphological analysis of the surface layer of brake disc after breaking tests. The results of the physicochemical analysis of TBL were correlated with the results of tribological tests (according to the SAE-J2522 procedure, commonly known as AK-Master) on a brake dynamometer adapted to the measurements of acoustic signals (NVH – noise, vibration, and harshness). The obtained results confirm the important role played by the so-called third body layer, formed on the surface of the brake disc for safety (COF), durability (wear of friction elements) and the acoustic spectrum accompanying braking.
PL
W pracy przedstawiono wpływ różnych układów lubrykantów, które decydują o właściwościach materiałów ciernych okładzin hamulcowych. Referencyjny hybrydowy materiał cierny zmodyfikowano różnymi rodzajami smarów stałych. Dodatki te dzielą się na grupy zawierające powszechnie stosowane materiały smarne: węgle i siarczki, mieszane w różnych proporcjach, mających wpływ na tworzenie się i strukturę tzw. warstwy trzeciego ciała (TBL) na powierzchni tarczy hamulcowej w wyniku hamowania. Do analizy chemicznej i morfologicznej powierzchni tarczy hamulcowej po testach hamowania wykorzystano odpowiednio spektroskopię Ramana (RS), spektroskopię masową jonów wtórnych (ToF-SIMS) oraz skaningową mikroskopię elektronową o wysokiej rozdzielczości z analizatorem rentgenowskim (SEM-EDS), wyposażoną w skupioną wiązkę jonów (FIB). Wyniki analizy fizykochemicznej TBL skorelowano z wynikami dynanometrycznych badań tribologicznych (zgodnie z procedurą SAE-J2522, popularnie nazywaną AK-Master) oraz widmami akustycznymi (NVH – hałas, drgania i złożoność sygnału). Uzyskane wyniki potwierdzają istotną rolę, jaką odgrywa warstwa tzw. trzeciego ciała, formująca się na powierzchni tarczy hamulcowej dla bezpieczeństwa (COF), trwałości (zużycie elementów ciernych) oraz widma akustycznego towarzyszącego hamowaniu.
Czasopismo
Rocznik
Tom
Strony
121--136
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • TOMEX Brakes Ltd. partnership, Budzyn, Poland
  • Institute of Polymer & Dye Technology, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
  • Institute of Organic & Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
  • Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
  • BOSMAL Automotive Research and Development Institute Ltd., Mechanical Testing Laboratory, Bielsko-Biala, Poland
Bibliografia
  • 1. Szlichting M., Bieliński D.M., Jóźwik I., Kosińska A., Dąbrowski T.: Physicochemical aspects of the work of passenger car brake linings. Part I: The effect of frictional additives. Tribologia 2022, accepted.
  • 2. Lu Y.: A combinatorial approach for automotive friction materials. Effects of ingredients on friction performance. Comp. Sci. Technol. 2006, 66, pp. 591–598.
  • 3. Jang H., Lee J.J., Kim S.J., Jung K.Y.: The effect of solid lubricants on friction characteristics. SAE paper 1998, 982235, pp. 1–8.
  • 4. Jang H., Kim S.J.: The effects of antimony trisulfide (Sb2S3) and zirconium silicate ZrSiO in the automotive brake friction material on friction characteristics. Wear 2000, 239, pp. 229–236.
  • 5. Gudmand-Høyer L., Bach A., Nielsen G.T., Morgen P. Wear 1999, 232, pp. 168–175.
  • 6. Osterle W., Dmitriev A.I.: The role of solid lubricants for brake friction materials. Lubricants 2016, 4, pp. 5–27.
  • 7. Melcher B., Faullant P.: A comprehensive study of chemical and physical properties of metal sulfides. SAE Technical Paper 2000-01-2757, SAE: Warrendale, PA, USA, 2000, pp. 39–49.
  • 8. Matejka V., Lu Y., Matekova P., Smetana B., Kukutschova J., Vaculik M., Tomasek V., Zla S., Fan Y.: Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings. Appl. Surf. Sci. 2011, 258, pp. 1862–1868.
  • 9. Cho M.H., Ju J., Kim J., Jang H.: Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 2006, 260, pp. 855–860.
  • 10. Kim S. J., Cho M. H., Cho K. H., Jang H.: Complementary effects of solid lubricants in the Automotive brake lining. Tribol. Int. 2007, 40, pp. 15–20.
  • 11. Uexküll O., Skerfving S., Doyle R., Braungart M.: Antimony in brake pads – A carcinogenic component? J. Clean. Prod. 2005, 13, pp. 19–31.
  • 12. Neis P.D., Ferreira N.F., Fekete G., Matozo L.T., Masotti D.: Towards a better understanding of the structures existing on the surface of brake pads. Tribiol. Int. 2017, 105, p. 135–147.
  • 13. Godet M.: The third-body approach: a mechanical view of wear. Wear 1984, 100, pp. 437–452.
  • 14. Ostermeyer G.P.: On the dynamics of the friction coefficient. Wear 2003, 254, pp. 852858.
  • 15. Wirth A, Eggleston D, Whitaker R.: A fundamental tribochemical study of the third body layer formed during automotive friction braking. Wear 1994, 179, pp. 75–81.
  • 16. Osterle W., Urban I.: Third body formation on brake pads and rotors. Tribol. Int. 2006, 39, p. 401-408.
  • 17. Chung D.D.L.: Review Graphite. J. Mater. Sci. 2002, 7, pp. 1475–1489.
  • 18. Sengupta R., Bhattacharya M., Bandyopadhyay S., Bhowmick A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 2011, 36, pp. 638–670.
  • 19. Kolluri D.K., Ghosh A.K., Bijwe J.: Analysis of load-speed sensitivity of friction composites based on various synthetic graphites. Wear 2009, 266, pp. 266–274.
  • 20. Kolluri D.K., Satapathy B.K., Bijwe J., Ghosh A.K.: Analysis of load and temperature dependence of tribo-performance of graphite filled phenolic composites. Mater. Sci. Eng. A. 2007, 456, pp. 162–169.ISSN 0208-7774 T R I B O L O G I A 3/2022 135
  • 21. Kolluri D.K., Boidin X., Desplanques Y., Degallaix G., Ghosh A.K., Kumar M., Bijwe J.: Effect of natural graphite particle size in friction materials on thermal localisation phenomenon during stop-braking. Wear 2010, 268, pp. 1472–1482.
  • 22. Kim S.J., Cho M.H., Cho K.H., Jang H.: Complementary effects of solid lubricants in the automotive brake lining. Tribol. Int. 2007, 40, pp. 15–20.
  • 23. Ghosh P., Naskar K., Das N.C.: Influence of synthetic graphite powder on tribological and thermomechanical properties of organic-inorganic hybrid fiber reinforced elastomer-modified phenolic resin friction composites. Composites Part C 2020, vol. 2 (Oct.), 100018.
  • 24. Zhan Y., Zhang G.: Friction and wear behaviour of copper matrix composites reinforced with SiC and graphite particles. Tribol. Lett. 2004, 17(1), pp. 91–98.
  • 25. Lu D., Gu M., Shi Z.: Materials transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel. Tribol. Lett. 1999, 6(1), pp. 5761.
  • 26. Samyn P., De Baets P., Schoukens G., Hendrickx B.: Tribological behaviour of pure and graphite filled polyimides under atmospheric conditions. Polym. Eng. Sci. 2003, 43(8), pp. 1477–1487.
  • 27. Gilardi R., Alzati L., Thiam M., Brunel J-F., Desplanques Y., Dufrénoy P., et al.: Copper substitution and noise reduction in brake pads: Graphite type selection. Materials 2012, 5(11), pp. 2258–2269.
  • 28. Mahaleb V., Bijwe J., Sinha S.: Efforts towards green friction materials. Tribol. Int. 2019, 136, pp. 196–206.
  • 29. Lin H-Y., Cheng H-Z., Lee K-J., Wang Ch-F., Liu Y-Ch., Wang Y-W.: Effect of Carbonaceous Components on Tribological Properties of Copper-Free NAO Friction Material. Materials 2020, 13, pp. 1163.
  • 30. Cai P., Wang T., Wang Q.: Effect of several solid lubricants on the mechanical and tribological properties of phenolic resin based composites. Polym. Comp. 2015, 36(12), pp. 2203–2211.
  • 31. Jang H., Kim S.J.: The effects of antimony trisulfide (Sb2S3) and zirconium silicate ZrSiO4 in the automotive brake friction material on friction characteristics. Wear 2000, 239, pp. 229–236.
  • 32. Lee S.J., Jeong J.S., Kim S.W., Rhee S.K.: Brake squeal and disc metallurgy variability: importance of disc wear. SAE Technical Paper 2014-01-2491, 2014.
  • 33. Santillan J.M.J, Arboleda D.M., Coral D.F., Fernandez van Raap M.B., Muraca D., Schinca D.C., Scaffardi L.B., Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents. ChemPhysChem 2017, 18, pp. 1192–1209.
  • 34. https://www.jasco-global.com/solutions/raman-measurement-of-surface-iron-oxidation-states; website visited 09-04-22.
  • 35. Maniukiewicz W., Bieliński D.M., Szlichting M.: The influence of the addition of various lubricant systems on the structure of the third body forming on the surface of the brake disc and the performance of the brake pads. Lodz 11.2020 (unpublished report).
  • 36. Liao Y.: Practical Electron Microscopy and Database (2006). EDS/WDS Measurements of Sulfur (S). https://www.globalsino.com/EM/page1384.html; website visited 25-07-22.
  • 37. Szlichting M., Bieliński D.M. Grams J., Pędzich Z.: The influence of the kind of composite friction material on morphology and composition of its surface layer and tribological properties. Tribologia 2016, no. 2, pp. 121–143.
  • 38. Eriksson M., Bergman F., Jacobson S.: Surface characterization of brake pads after running under silent and squealing conditions. Wear 1999, 232, pp. 163-167.
  • 39. Chung J.O., Go S.R., Kim J.H., Choi J.G., Kim H. R., Choi H.B.: Effect of MoS2 on transfer film formation and friction coefficients in NAO friction material. Ind. Lubr. Tribol. 2019, 71(2), pp. 221–231.
  • 40. Nicholson G.: Facts about friction. A friction material manual almost all you need to know about manufacturing. Geodoran, Winchester, VA (USA), 1995.
  • 41. Yi G., Yan F.: Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites. Mater. Sci. Eng. A 2006, 425, 2006, pp. 330–338.
  • 42. Chung J.O., Go S.R., Kim J.H., Kim H.R., Choi H.B., Song Y.W., So S.S.: (2016), Formation of transfer films in NAO friction materials containing different abrasive components. International Scientific Conference on Engineering and Applied Sciences, 24-26.05.2016, Beijing, No. 1203, pp. 177–184.
  • 43. Nosal S., Orłowski T.: Wpływ rodzaju użytego grafitu i koksu naftowego na właściwości tarciowo-zużyciowe materiałów ciernych. Tribologia 2010, no. 5, pp. 85–93 (in Polish).
  • 44. Jaworski J.: Okładziny cierne do hamulców i sprzęgieł pojazdów mechanicznych. WKŁ, Warsaw 1984 (in Polish).
  • 45. Fasereinsatz in Reibbelägen – Materials from STW Schenkenzell GmbH.
  • 46. Eriksson M., Lord J., Jacobson S.: Wear and contact conditions of brake pads: Dynamical in situ studies of pad on glass. Wear 2001, 249, pp. 272–278.
  • 47. Filip P., Weiss Z., Rafaja D.: On friction layer formation in polymer matrix composite materials for brake applications. Wear 2002, 252, pp. 189–198.
  • 48. Hinrichs R., Vasconcellos M.A.Z., Österle W., Prietzel C.: A TEM snapshot of magnetite formation in brakes: The role of the disc's cast iron graphite lamellae in third body formation. Wear 2011, 270, pp. 365–370.
  • 49. Nosal S.: Tribologia. Wprowadzenie do zagadnień tarcia, zużywania i smarowania. Poznań University of Technology, Poznań 2012 (in Polish).
  • 50. Pandolfo F.: Influence of Graphite Properties on Tribological Behaviour of Brake Friction Materials – Eurobrake, Conference Paper, May 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58d33961-ef34-4367-b9a5-c688cbafd198
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.