PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of gait stability and preferred walking speed in virtual reality

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of human gait as well as diagnosis of human locomotion organ should always be conducted with velocity of gait equal to Preferred Walking Speed (PWS). The literature review shows that the PWS value is not the same in real and virtual environment. The aim of this study was to determine PWS values in both environments and to specify values of parameters used in equations enabling PWS calculations on the basis of lower limb length. Methods: Research-related tests involved 40 subjects walking on the treadmill and wearing HMD goggles. The spatial scenery made participants feel like during a walk in the park. The tests included measurements of displacements of the COP, allowing for the calculation of the Lyapunov exponent and Floquet Multiplier. Both coefficients were used to identify stability at various gait velocities. Results: The analysis revealed that the PWS in relation to gait on the treadmill with VR was lower than the PWS without VR. The final stage of research involved the determination of new values of coefficients of the formula enabling the identification of the velocity of comfort of gait in VR. Conclusions: Obtained results proved that PWS in real and virtual environment are different. The lower values were obtained for measurements in VR. On the basis of these results, value of the “a” coefficient, used in PWS calculations on the basis of lower limb length, was re-determined. The new value makes it possible to assess PWS for gait conducted on treadmill in virtual environment, what can be very important in gait evaluation.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
  • Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Biomedical Engineering, Department of Biomechatronics, Gliwice, Poland
Bibliografia
  • [1] BISI M.C., RIVA F., STAGNI R., Measures of gait stability: performance on adults and toddlers at the beginning of independent walking, J. Neuroeng. Rehabil., 2014, 11, 1–9.
  • [2] DINGWELL J.B., MARIN L.C., Kinematic variability and local dynamic stability of upper body motions when walking at different speeds, J. Biomech., 2006, 39, 444–452.
  • [3] EMMERIK R.E.A., VAN, DUCHARME S.W., AMADO A.C., HAMILL J., Comparing dynamical systems concepts and techniques for biomechanical analysis, J. Sport Heal Sci., Elsevier B.V., 2016, 5, 3–13.
  • [4] ENGLAND S.A., GRANATA K.P., The influence of gait speed on local dynamic stability of walking, Gait Posture, 2007, 25, 172–178.
  • [5] GZIK M., WODARSKI P., JURKOJĆ J., MICHNIK R., BIENIEK A., Interactive System of Enginering Support of Upper Limb Diagnosis, 2017, 115–123.
  • [6] JOCHYMCZYK-WOŹNIAK K., NOWAKOWSKA K., MICHNIK R., NAWRAT-SZOŁTYSIK A.G.W., Assessment of balance of older people living at a social welfare home, Adv. Intell. Syst. Comput. Innov. Biomed. Eng., 2018, 623, 217–224.
  • [7] JOCHYMCZYK-WOŹNIAK K., NOWAKOWSKA K., POLECHOŃSKI J., SŁADCZYK S., MICHNIK R., Physiological Gait versus Gait in VR on Multidirectional Treadmill – Comparative Analysis, Medicina, 2019, 55, 517, DOI: 10.3390/medicina55090517.
  • [8] JURKOJĆ J., Balance disturbances coefficient as a new value to assess ability to maintain balance on the basis of FFT curves, Acta Bioeng. Biomech., 2018, 20, 143–151.
  • [9] JURKOJĆ J., WODARSKI P., BIENIEK A., GZIK M., MICHNIK R., Influence of changing frequency and various sceneries on stabilometric parameters and on the effect of adaptation in an immersive 3D virtual environment, Acta Bioeng. Biomech., 2017, 19, 129–137.
  • [10] KACZMARCZYK K., WISZOMIRSKA I., BŁAŻKIEWICZ M., WYCHOWAŃSKI M., WIT A., First signs of elderly gait for women, Med. Pr., 2017, 68, 441–448.
  • [11] KANG H.G., DINGWELL J.B., Effects of walking speed, strength and range of motion on gait stability in healthy older adults, J. Biomech., 2008, 41, 2899–2905.
  • [12] KYVELIDOU A., HARBOURNE R.T., STUBERG W.A., SUN N.S.J., Reliability of Center of Pressure Measures for Assessing the Development of Sitting Postural Control, Arch. Phys. Med. Rehabil., 2009, 90, 1176–1184.
  • [13] LIU K., WANG H., XIAO J., The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance, Comput. Math. Methods Med., 2015, 2015, 1–11.
  • [14] LIU K., WANG H., XIAO J., TAHA Z., Analysis of Human Standing Balance by Largest Lyapunov Exponent, Comput. Intell. Neurosci., Hindawi Publishing Corporation, 2015, 1–10.
  • [15] MCANDREW YOUNG P.M., DINGWELL J.B., Voluntary changes in step width and step length during human walking affect dynamic margins of stability, Gait Posture. Elsevier B.V., 2012, 36, 219–224.
  • [16] MCANDREW P.M., DINGWELL J.B., WILKEN J.M., Walking variability during continuous pseudo-random oscillations of the support surface and visual field, J. Biomech., 2010, 43, 1470–1475.
  • [17] MENEGONI F., ALBANI G., BIGONI M., PRIANO L., TROTTI C., GALLI M. et al., Walking in an immersive virtual reality, Ann. Rev. Cyber. Therapy Telemed., 2009, 7, 72–76.
  • [18] MICHNIK R., JURKOJĆ J., WODARSKI P., GZIK M., JOCHYMCZYK-WOŹNIAK K., BIENIEK A., The influence of frequency of visual disorders on stabilographic parameters, Acta Bioeng. Biomech., 2016, 18, 25–33.
  • [19] PAUK J., IHNATOUSKI M., DAUNORA VICIENE K., LASKHOUSKY U., GRISKEVICIUS J., Research of the spatial-temporal gait parameters and pressure characteristic in spastic diplegia children, Acta Bioeng. Biomech., 2016, 18, 2, 121–129.
  • [20] RÁBAGO C.A., DINGWELL J.B., WILKEN J.M., Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait, J.M. Haddad (Ed.), PLoS One, 2015, 10.
  • [21] ROSENSTEIN M.T., COLLINS J.J., DE LUCA C.J., A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D. Nonlinear Phenom., 1993, 65, 117–134.
  • [22] SPYRAKOS-PAPASTAVRIDIS E., PERRIN N., TSAGARAKIS N.G., DAI J.S., CALDWELL D.G., Lyapunov Stability Margins for Humanoid Robot Balancing, 2014 IEEE/RSJ Int. Conf. Intell. Robot Syst., IEEE, 2014, 945–951.
  • [23] SUBRAMANIAN S., KNAUT L.A., BEAUDOIN C., MCFADYEN B.J., FELDMAN A.G., LEVIN M.F., Virtual reality environments for post-stroke arm rehabilitation, J. Neuroeng. Rehabil., 2007.
  • [24] TERRIER P., DÉRIAZ O., Non-linear dynamics of human locomotion: Effects of rhythmic auditory cueing on local dynamic stability, Front Physiol., 2013, 4, Sep.
  • [25] WONG D.M., RUBY R.E., EATROFF A., YAEGER M.J., Use of Renal Replacement Therapy in a Neonatal Foal with Postresuscitation Acute Renal Failure, J. Vet. Intern. Med., 2017, 31, 593–597.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58cdcfc2-9cad-457a-9288-e9d4046c2fbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.