PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Statistical Analysis of Possibility Sources – Rotation Speed, Clamping Torque and Clamping Pith for Quality Assessment in Friction Stir Welding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is the first to optimize the friction stir welding (FSW) process considering the Clamp Pitch (mm) and Clamping Torque effect using the Various combinations of parameters were constructed using factorial design and responses, resulting in a comprehensive factorial analysis. Conspicuous changes in the tensile strength, yield strength, hardness, and power profile were observed for all amalgamations of parameters. Significant parameters of the FSW process have been considered in many optimization studies, however, the effect of the Clamp Pitch (mm) and Clamping Torque (Nm) has been never studied. Three levels of three parameters were used in the experiments: Clamp Pitch, tool rotational speed and Clamping Torque. The full factorial analysis was performed, was applied as an approach for selecting the values of the Significant factors of the parameters. For each result the three key parameters were important with p-values of less than 0.05, suggesting their significance in the phase of FSW. Mathematical models built with high R-sq. and least percentage error were adequate for the investigated responses. The findings were gained by important parameter values factors of 30 mm, 1800 rpm and 70 Nm for the take into consideration parameter range for the Clamp Pitch, rotational speed and Clamping Torque respectively.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering, Benha University, Benha 13518, Egypt
Bibliografia
  • Ahmed, I.S., El-Kassas, M. (2019). Optimization of the Underwater Friction Stir Welding of Pipes Using Hybrid RSM-Fuzzy Approach. International Journal of Applied Engineering Research, 14, 24.
  • Ahmad Shah, L.H., Midawi, A., Walbridge, S., and Gerlich, A. (2020). Influence of tool offsetting and base metal positioning on the material flow of AA5052- AA6061 dissimilar friction stir welding. Journal of Mechanical Engineering and Sciences, 14, 1, 6393–6402.
  • Ambabu, G., Balaji Naik, D., Venkata Rao, C., Srinivasa, K.R., and Madhusudan G.R. (2015). Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defence Technology, 11, 330–337.
  • ASM International (2009). Handbook Volume 2: Properties and selection: nonferrous alloys and specialpurpose materials.
  • Barlas, Z. and Ozsarac, U. (2012). Effects of FSW Parameters on Joint Properties of Al-Mg3 Alloy. Welding Journal, 91, 16–22.
  • Branco, R., Berto, F., and Kotousov, A. (2018). Mechanical Behaviour of Aluminium Alloys, MDPI.
  • Cole, E., Fehrenbacher, A., Duffie, N., Zinn, M., Pfefferkorn, F., and Ferrier, N. (2014). Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6. International Journal of Advanced Manufacturing Technology, 71, 643–652.
  • Dhancholia, D.D., Sharma, A., and Vyas, CH. (2014). Optimisation of Friction Stir Welding Parameters for AA 6061 and AA 7039 Aluminium Alloys by Response Surface Methodology (RSM). International Journal of Advanced Mechanical Engineering, 4, 5, 565–571.
  • Elatharasan, G. and Senthil Kumar, V.S. (2013). An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy using RSM. Procedia Engineering, 64, 1227–1234.
  • Gadallah, N., Sabry, I., and Ghafaar M.A. (2020). A Summarized Review on Friction Stir Welding for Aluminum Alloys. International Journal on: The Academic Research Community Publication, IEREK Press. DOI: 10.21625/archive.v4i1.695.
  • Guo, S., Shah, L., Ranjan, R., Walbridge, S., and Gerlich, A. (2018). Effect of quality control parameter variations on the fatigue performance of aluminum friction stir welded joints. International Journal of Fatigue, 118, 150–161.
  • Hwang, Y., Kang, X., Chiou Y., and Hsu, H. (2008). Experimental study on temperature distributions within the work piece during friction stir welding of aluminum alloys. International Journal of Machine Tools and Manufacture, 48, 778–787.
  • Kadaganchi, R., Gankidi, M.R., and Gokhale, H. (2015). Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Defence Technology, 11, 209–219.
  • Kulekci, M.K., Sik, A., and Kaluc, E. (2008). Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. The International Journal of Advanced Manufacturing Technology, 36, 877–882.
  • Mohammed, M.H., Ishak, M., and Rejab, R. (2015). A simplified design of clamping system and fixtures for friction stir welding of aluminium alloys. Journal of Mechanical Engineering and Sciences, 9, 1628–1639.
  • Muruganandam, D. and Das, S. (2011). Friction Stir Welding Process Parameters for Joining Dissimilar Aluminum Alloys. International Journal of Mechanical Engineering and Technology, 2, 25–38.
  • Naghibi, H., Shakeri, M., and Hosseinzadeh, M. (2016). Neural Network and Genetic Algorithm Based Modeling and Optimization of Tensile Properties in FSW of AA 5052 to AISI 304 Dissimilar Joints. Transactions of the Indian Institute of Metals, 69, 4, 891–900.
  • Palanivel, R., Koshy, P.M., and Murugan, N. (2011). Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminum alloy. Journal of Engineering Science and Technology Review, 4, 1, 25–31.
  • Periyasamy, P., Mohan, B., Balasubramanian, V., Rajakumar, S., and Venugopal, S. (2013). Multiobjective optimization of friction stir welding parameters using desirability approach to join Al/SiCp metal matrix composites. Transactions of Nonferrous Metals Society of China, 23, 4, 942–955.
  • Sabry, I. (2019). Improvement of Mathematical Model to Predict the Mechanical Properties and Corrosion rate of Friction Stir Welded 2024 Aluminum Alloy. in 2th International Conférence on Materials Science and Engineering, Cairo, Egypt, 11–13 March 2019.
  • Sabry, I. and El-Kassas, A. (2019). An appraisal of characteristic mechanical properties and microstructure of friction stir welding for Aluminium 6061 alloy – Silicon Carbide SiCp metal matrix composite. Journal of Mechanical Engineering and Sciences, 13, 4, 5804–5817.
  • Sabry, I., Mourad, A., and Thekkuden, D.T. (2020). Optimization of metal inert gas welded aluminium 6061 pipe parameters using analysis of variance and grey relational analysis. SN Applied Sciences, 2, 175, 1–11.
  • Sabry Abdel, H.I.M. and Thekkuden, D.T. (2021). Vibration-Assisted friction stir welding of AA2024- T3 plates. Proceedings of the ASME 2021 Pressure Vessels & Piping Conference PVP, July 12–16, online.
  • Sabry, I., Idrisi, A.H., and Ismail Mourad, A-H. (2021). Friction stir welding process parameters optimization through hybrid multi-criteria decision-making approach. International Review on Modelling and Simulations (IREMOS), 14, 1, 32–43.
  • Sathari, N.A.A., Shah, L.H., and Razali, A.R. (2014). Investigation of single-pass/double-pass techniques on friction stir welding of aluminium. Journal of Mechanical Engineering and Sciences, 7, 1053–1061.
  • Sheikh-Ahmad, J., Ozturk, F., Jarrar, F., and. Evis, Z. (2016). Thermal history and microstructure during friction stir welding of Al–Mg alloy. International Journal of Advanced Manufacturing Technology, 86, 1071–1081.
  • Stojanovic, B., Bukvic, M., and Epler, I. (2018). Application of Aluminum and Aluminum Alloys in Engineering. Applied Engineering Letters, 3, 2, 52–62.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58cc1d5f-f7f8-450d-9384-cde2e39e91b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.