Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study seeks to explore the effectiveness of employing foldable containers (FLDs) in liner shipping to reduce relocation and the empty containers and bunker costs (BCs) associated with ship operations. This resolves a minimum-cost multi-commodity network flow problem by optimizing container fleet size and empty container relocation in a multi-port shipping service network. Port handling time and sailing speed provided by obtained optimal solutions enable the determination of ship BCs as a secondary step. The numerical experiments demonstrate the comparative effect of FLDs against standard ones on the reduction of the costs of empty containers and containership bunker oil.
Czasopismo
Rocznik
Tom
Strony
67--80
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Tokai University; 3-20-1 Orido, Shimizu, Shizuoka 4248610, Japan
autor
- Kobe University; 5-1-1 Fukaeminami, Higashinada, Kobe, Hyogo 6580022, Japan
autor
- Kobe University; 5-1-1 Fukaeminami, Higashinada, Kobe, Hyogo 6580022, Japan
Bibliografia
- 1. Doudnikoff, M. & Lacoste, R. Effect of a speed reduction of containerships in response to higher energy costs in sulphur emission control areas. Transportation Research Part D. 2014. Vol. 28. P. 51-61. DOI: 10.1016/j.trd.2014.03.002.
- 2. Fagerholt, K. & Gausel, N.T. & Rakke, J.G. & Psaraftis, H.N. Maritime routing and speed optimization with emission control areas. Transportation Research Part C. 2015. Vol. 52. P. 57-73. DOI: 10.1016/j.trc.2014.12.010.
- 3. Fagerholt, K. & Psaraftis, H.N. On two speed optimization problems for ships that sail in and out of emission control areas. Transportation Research Part D. 2015. Vol. 39. P. 56-64. DOI: 10.1016/j.trd.2015.06.005.
- 4. Vad Karsten, C.V. & Brouer, B.D. & Pisinger, D. Competitive liner shipping network design. Computers and Operations Research. 2017. Vol. 87. P. 125-136. DOI: 10.1016/j.cor.2017.05.018.
- 5. Konings, R. & Thijs, R. Foldable containers: A new perspective on reducing container-repositioning costs. European Journal of Transport and Infrastructure Research. 2001. Vol. 1. No. 4. P. 333-352.
- 6. Konings, R. Foldable containers to reduce the costs of empty transport? A cost-benefit analysis from a chain and multi-actor perspective, Maritime Economics & Logistics. 2005. Vol. 7. No. 3. P. 223¬249. DOI: 10.1057/palgrave.mel.9100139.
- 7. Lun, Y.H.V. & Lai, K.H. & Cheng, T.C.E. Shipping and logistics management. 2010. Springer¬Verlag, London.
- 8. Moon, I.K. & Hong, H. Repositioning of empty containers using both standard and foldable containers. Maritime Economics & Logistics. 2016. Vol. 18. No. 1. P. 61-77. DOI: 10.1057/mel.2015.18.
- 9. Myung, Y.S. & Moon, I.K. A network flow model for the optimal allocation of both foldable and standard containers. Operations Research Letters. 2014. Vol. 42. No. 6-7. P. 484-488. DOI: 10.1016/j.orl.2014.08.004.
- 10. Notteboom, T.E. & Vernimmen, B. The effect of high fuel costs on liner service configuration in container shipping. Journal of Transport Geography. 2009. Vol. 17. No. 5. P. 325-337. DOI: 10.1016/j.jtrangeo. 2008.05.003.
- 11. Ocean Network Express. Service Maps. 2018. Available at: https://www.one- line.com/en/routes/current-services/.
- 12. Pernia, O. & Barrons, A. Terminal productivity: optimizing the operational front line. White Paper. 2019. Navis.
- 13. Psaraftis, H.N. & Kontovas, C.A. Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C. 2014. Vol. 44. P. 52-69. DOI: 10.1016/j.trc.2014.03.001.
- 14. Qi, X. & Song, D.P. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times, Transportation Research Part E. 2012. Vol. 48. No. 4. P. 863-880. DOI: 10.1016/j.tre.2012.02.001.
- 15. Shintani, K. & Konings, R. & Imai, A. The effect of foldable containers on the costs of container fleet management in liner shipping networks. Maritime Economics & Logistics. 2012. Vol. 14. No. 4. P. 455-479. DOI: 10.1057/mel.2012.16.
- 16. Shintani, K. & Konings, R. & Imai, A. Combinable containers: A container innovation to save container fleet and empty container repositioning costs. Transportation Research Part E. 2019. Vol. 130. P. 248-272. DOI: 10.1016/j.tre.2019.09.004.
- 17. Ship & Bunker. Singapore Bunker Prices. 2022. Available at: https://shipandbunker.com/prices/apac/sea/sg-sin-singapore/.
- 18. Suzuki, T. Fuel consumption of container ship and RORO cargo ship and effect of oil price rise on domestic RORO cargo ship transportation of long distance routes. Technical Note of National Institute for Land and Infrastructure Management. 2009. Vol. 494. P. 1-15. (In Japanese).
- 19. The World Bank. The container port performance index 2020: A comparable assessment of container port performance, World Bank. 2021. Washington, DC. License: Creative Commons Attribution CC BY 3.0 IGO. Available at: https://openknowledge.worldbank.org/entities/publication/4d9fedd7-0942-5dec-ba9c- 698a8b8350ac/.
- 20. United Nations. Review of maritime transport: Overview. United Nations Conference on Trade and Development. 2022. Available at: https://unctad.org/system/files/official- document/rmt2022overview_en.pdf/.
- 21. U.S. Energy Information Administration. Weekly retail gasoline and diesel prices. 2023. Available at: https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm/.
- 22. Wang, C. & Chen, J. Strategies of refueling, sailing speed and ship deployment of containerships in the low-carbon background, Computers and Industrial Engineering. 2017. Vol. 114. P. 142-150. DOI: 10.1016/j.cie.2017.10.012.
- 23. Wang, S. & Meng, Q. Sailing speed optimization for container ships in a liner shipping network, Transportation Research Part E. 2012. Vol. 48. No. 3. P. 701-714. DOI: 10.1016/j.tre.2011.12.003.
- 24. Wang, S. & Meng, Q. Robust bunker management for liner shipping networks, European Journal of Operational Research. 2015. Vol. 243. No. 3. P. 789-797. DOI: 10.1016/j.ejor.2014.12.049.
- 25. Wang, K. & Wang, S. & Zhen, L. & Qu, X. Ship type decision considering empty container repositioning and foldable containers. Transportation Research Part E. 2017. Vol. 108. P. 97-121. DOI: 10.1016/j.tre.2017.10.003.
- 26. Wen, M. & Pacino, D. & Kontovas, C.A. & Psaraftis, H.N. A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research Part D. 2017. Vol. 52. P. 303-321. DOI: 10.1016/j.trd.2017.03.009.
- 27. Wu, W.M. The optimal speed in container shipping: Theory and empirical evidence, Transportation Research Part E. 2020. Vol. 136. No. 101903. DOI: 10.1016/j.tre.2020.101903.
- 28. Zheng, J. & Ma, Y. & Ji, X. & Chen, J. Is the weekly service frequency constraint tight when optimizing ship speeds and fleet size for a liner shipping service? Ocean & Coastal Management. 2021. Vol. 212. No. 05815. DOI: 10.1016/j.ocecoaman.2021.105815.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58cbdc3d-4d09-4151-9e39-172327015719