PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Road Subsidence Caused by Underground Mining Activities by Artificial Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przewidywanie osiadania dróg spowodowanego podziemną działalnością górniczą za pomocą sztucznych sieci neuronowych
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
Mining-induced road subsidence is a significant concern in areas with extensive underground mining activities. Therefore, the prediction of road subsidence is crucial for effective land management and infrastructure planning. This paper applies an artificial neural network (ANN) to predict road subsidence caused by underground mining activities in Vietnam. The ANN model proposed in this study is adopted relying on the recursive multistep prediction process, in which the predicted value in the previous step is appended to the time series to predict the next value. The entire dataset of 12 measured epochs covering 12 months with a 1-month repeat time is divided into the training set by the first 9 measured epochs and the test set by the last 3 measured epochs. K-fold cross validation is first applied to the training set to determine the best model’s hyperparameters, which are then adopted to predict land subsidence of the test set. Absolute errors of the predicted road subsidence depend on the separated time between the last measured epoch and the predicted epoch. Those errors at the 10th month of the three tested points are 3.0%, 0.1 %, and 0.1%, which increase to 4.8%, 3.3%, and 1.5% at the 11th month, and 7.2%, 2.5% and 1.3% at the 12th month. The absolute errors are found to be small, which were all ranged with 0.5 mm and demonstrates that the proposed method utilizing ANN in this study can produce good prediction for road subsidence time series at mining areas.
Rocznik
Strony
335--340
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Faculty of Information Technology, University of Transport and Communications, Hanoi, Vietnam
  • Faculty of Petroleum and Energy, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) Research Group, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Faculty of Geo-data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Kraków, Poland;
Bibliografia
  • 1. Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4), 185-196. doi:10.1016/0925-2312(93)90006-O
  • 2. Ambrožič, T., & Turk, G. (2003). Prediction of subsidence due to underground mining by artificial neural networks. Computers & Geosciences, 29(5), 627-637. doi:10.1016/S0098-3004(03)00044-X
  • 3. Aston, T. R. C., Tammemagi, H. Y., & Poon, A. W. (1987). A review and evaluation of empirical and analytical subsidence prediction techniques. Mining Science and Technology, 5(1), 59-69. doi:10.1016/S0167-9031(87)90924-8
  • 4. Bahuguna, P. P., Srivastava, A. M. C., & Saxena, N. C. (1991). A critical review of mine subsidence prediction methods. Mining Science and Technology, 13(3), 369-382. doi:10.1016/0167-9031(91)90716-P
  • 5. Bian, H.-f., Zhang, S.-b., Zhang, Q.-z., & Zheng, N.-s. (2014). Monitoring large-area mining subsidence by GNSS based on IGS stations. Transactions of Nonferrous Metals Society of China, 24(2), 514-519. doi:10.1016/S1003-6326(14)63090-9
  • 6. Bui, X.-N., Tran, V. A., Bui, L. K., Nguyen, Q. L., Le, T. T. H., & Ropesh, G. (2021). Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam, Cham.
  • 7. Dorband, I. I., Jakob, M., & Steckel, J. C. (2020). Unraveling the political economy of coal: Insights from Vietnam. Energy Policy, 147, 111860. doi:10.1016/j.enpol.2020.111860
  • 8. Fan, S., Yan, J., & Sha, J. (2017). Innovation and economic growth in the mining industry: Evidence from China's listed companies. Resources Policy, 54, 25-42. doi:10.1016/j.resourpol.2017.08.007
  • 9. Fleming, D. A., & Measham, T. G. (2014). Local job multipliers of mining. Resources Policy, 41, 9-15. doi:10.1016/j.resourpol.2014.02.005
  • 10. Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137-146. doi:10.1007/s11222-009-9153-8
  • 11. Hilson, G. (2002). Small‐scale mining and its socio‐economic impact in developing countries. Paper presented at the Natural resources forum.
  • 12. Jing-xiang, G., & Hong, H. (2009). Advanced GNSS technology of mining deformation monitoring. Procedia Earth and Planetary Science, 1(1), 1081-1088. doi:10.1016/j.proeps.2009.09.166
  • 13. Kim, T. T. H., Tran, H. H., Bui, L. K., & Lipecki, T. (2021). Mining-induced Land Subsidence Detected by Sentinel-1 SAR Images: An Example from the Historical Tadeusz Kościuszko Salt Mine at Wapno, Greater Poland Voivodeship, Poland. Inżynieria Mineralna, 48(2), 41-52. doi:10.29227/IM-2021-02-04
  • 14. Knierzinger, J. (2014). The socio-political implications of bauxite mining in Guinea: A commodity chain perspective. The extractive industries and society, 1(1), 20-27. doi:10.1016/j.exis.2014.01.005
  • 15. Lee, S., Park, I., & Choi, J.-K. (2012). Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network. Environmental Management, 49(2), 347-358. doi:10.1007/s00267-011-9766-5
  • 16. Ma, C., Li, H., & Zhang, P. (2017). Subsidence prediction method of solid backfilling mining with different filling ratios under thick unconsolidated layers. Arabian Journal of Geosciences, 10(23), 511. doi:10.1007/s12517-017-3303-7
  • 17. Marschalko, M., Yilmaz, I., Křístková, V., Fuka, M., Kubečka, K., Bouchal, T., & Bednarik, M. (2012). Optimization of building site category determination in an undermined area prior to and after exhausting coal seams. International Journal of Rock Mechanics and Mining Sciences, 54, 9-18. doi:10.1016/j.ijrmms.2012.05.021
  • 18. Mohsin, M., Zhu, Q., Naseem, S., Sarfraz, M., & Ivascu, L. (2021). Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach. Processes, 9(6), 972. doi:10.3390/pr9060972
  • 19. Nguyen, B. N., Boruff, B., & Tonts, M. (2017). Mining, development and well-being in Vietnam: A comparative analysis. The extractive industries and society, 4(3), 564-575. doi:10.1016/j.exis.2017.05.009
  • 20. Nguyen, B. N., Boruff, B., & Tonts, M. (2021). Looking through a crystal ball: Understanding the future of Vietnam's minerals and mining industry. The extractive industries and society, 8(3), 100907. doi:10.1016/j.exis.2021.100907
  • 21. Nguyen, Q. L., Tran, V. A., & Bui, L. K. (2021). Determination of Ground Subsidence by Sentinel-1 SAR Data (2018-2020) over Binh Duong Quarries, Vietnam. VNU Journal of Science: Earth and Environmental Sciences, 37(2), 69-83. doi:10.25073/2588-1094/vnuees.4605
  • 22. Nguyen, Q. N., Nguyen, V. H., Pham, T. P., & Chu, T. K. L. (2021). Current Status of Coal Mining and Some Highlights in the 2030 Development Plan of Coal Industry in Vietnam. Inżynieria Mineralna. doi:10.29227/IM-2021-02-34
  • 23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
  • 24. Rafie, M., & Samimi Namin, F. (2015). Prediction of subsidence risk by FMEA using artificial neural network and fuzzy inference system. International Journal of Mining Science and Technology, 25(4), 655-663. doi:10.1016/j.ijmst.2015.05.021
  • 25. Todorović, R. T. (1993). Precise Levelling Network Adjustment in Mining Subsidence Regions, Berlin, Heidelberg.
  • 26. Yang, W., & Xia, X. (2013). Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks. Computers & Geosciences, 52, 199-203. doi:10.1016/j.cageo.2012.10.017
  • 27. Zou, J., Han, Y., & So, S.-S. (2009). Overview of Artificial Neural Networks. In D. J. Livingstone (Ed.), Artificial Neural Networks: Methods and Applications (pp. 14-22). Totowa, NJ: Humana Press.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58cb8baf-7957-4b56-8062-4989124042ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.