PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of closed loop control on diagnostic indices in different faults of squirrel cage induction motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to study the influence of closed loop control on diagnostic indices of both broken bar and mixed air-gap eccentricity fault indices of the squirrel cage induction motor drive. The present work is focused on the direct stator current isd signal analysis, which is independent of torque load when the induction motor is controlled by an indirect control field. The fault signatures are on the line extracted from the direct stator current signal using the discrete Fourier transformation (DFT). The formula of the measured direct stator current at both conditions is determined by the transfer function of the current loop. The obtained results show that the current loop corresponds to a low pass filter and can reduce the magnitude of diagnostic indicators which lead to wrong evaluation of the fault. Simulation and experiments were carried out in order to confirm the theoretical analysis.
Rocznik
Strony
943--958
Opis fizyczny
Bibliogr. 33 poz., rys., tab. wz.
Twórcy
  • Departement d’electrotechnique, Laboratoire d’electrotechnique de Constantine Universite Constantine 1, 25000 Constantine, Algeria
  • Departement d’electrotechnique, Laboratoire d’electrotechnique de Constantine Universite Constantine 1, 25000 Constantine, Algeria
  • Departement d’electrotechnique, Laboratoire d’electrotechnique de Constantine Universite Constantine 1, 25000 Constantine, Algeria
  • Departement d’electrotechnique, Laboratoire d’electrotechnique de Constantine Universite Constantine 1, 25000 Constantine, Algeria
Bibliografia
  • [1] Hou Z., Huang J., Liu H., Ye M., Liu Z., Yang J., Diagnosis of broken rotor bar fault in open-and closed loop controlled wye-connected induction motors using zero sequence voltage, IET Electric Power Applications, vol. 11, no. 7, pp. 1214–1223 (2017), DOI: 10.1049/iet-epa.2016.0505.
  • [2] Blodt M., Granjon P., Raison B., Rostaing G., Models for bearing damage detection in induction motors using stator current monitoring, IEEE transactions on industrial electronics, vol. 55, no. 4, pp. 1813–1822 (2008), DOI: 10.1109/TIE.2008.917108.
  • [3] Jung J.H., Lee J.J., Kwon B.H., Online diagnosis of induction motors using MCSA, IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1842–1852 (2006), DOI: 10.1109/TIE.2006.885131.
  • [4] Song X., Hu J., Zhu H., Zhang J., A bearing outer raceway fault detection method in induction motors based on instantaneous frequency of the stator current, IEEJ Transactions on Electrical and Electronic Engineering, vol. 13, no. 3, pp. 510–516 (2018), DOI: 10.1002/tee.22595.
  • [5] Basak D., Tiwari A., Das S.P., Fault diagnosis and condition monitoring of electrical machines – A Review, In 2006, IEEE International Conference on Industrial Technology, pp. 3061–3066 (2006), DOI: 10.1109/ICIT.2006.372719.
  • [6] Huang X., Habetler T.G., Detection of mixed air gap eccentricity in closed-loop drive-connected induction motors, In 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003, SDEMPED 2003, pp. 312–316 (2003), DOI: 10.1109/DEMPED. 2003.1234592.
  • [7] Nandi S., Toliyat H.A., Li X., Condition monitoring and fault diagnosis of electrical motors – A review, IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 719–729 (2005), DOI: 10.1109/TEC.2005.847955.
  • [8] Henao H., Razik H., Capolino G.A. Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults, IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 801–807 (2005), DOI: 10.1109/TIA.2005.847320.
  • [9] Blodt M., Regnier J., Faucher J., Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current Wigner distributions, IEEE Transactions on Industry Applications, vol. 45, no. 6, pp. 1991–2000 (2009), DOI: 10.1109/TIA.2009.2031888.
  • [10] Maouche Y., Boussaid A., Boucherma M., Khezzar A., Analytical study of pulsating torque and harmonic components in rotor current of six-phase induction motor under healthy and faulty conditions, In 2013, 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), pp. 295–301 (2013), DOI: 10.1109/DEMPED.2013.6645731.
  • [11] Maouche Y., Oumaamar M.E.K., Boucherma M., Khezzar A., Instantaneous power spectrum analysis for broken bar fault detection in inverter-fed six-phase squirrel cage induction motor, International Journal of Electrical Power and Energy Systems, vol. 62, pp. 110–117 (2014), DOI: 10.1016/j.ijepes.2014.04.030.
  • [12] Maouche Y., Boussaid A., Boucherma M., Khezzar A., Modeling and simulation of stator turn faults. Detection based on stator circular current and neutral voltage, In 2013, 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), pp. 263–268 (2013), DOI: 10.1109/DEMPED.2013.6645726.
  • [13] Yacine M., Contribution a l’etude de la machine asynchrone double etoile, Université Mentouri Constantine (2015).
  • [14] Huang X., Habetler T.G., Harley R.G., Analysis, simulation, and experiments of rotor eccentricity in closed-loop drive-connected induction motors, In 2005, 5th IEEE International Symposium on Diag- nostics for Electric Machines, Power Electronics and Drives, pp. 1–6 (2005), DOI: 10.1109/DEMPED. 2005.4662518.
  • [15] Xu B., Sun L., Ren H., A new criterion for the quantification of broken rotor bars in induction motors, IEEE Transactions on Energy Conversion, vol. 25, no. 1, pp. 100–106 (2009), DOI: 10.1109/TEC. 2009.2032626.
  • [16] Bossio G.R., De Angelo C.H., Bossio J.M., Pezzani C.M., Garcia G.O., Separating broken rotor bars and load oscillations on IM fault diagnosis through the instantaneous active and reactive currents, IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4571–4580 (2009), DOI: 10.1109/TIE.2009.2024656.
  • [17] Kral C., Wieser R.S., Pirker F., Schagginger M., Sequences of field-oriented control for the detection of faulty rotor bars in induction machines-the Vienna Monitoring Method, IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1042–1050 (2000), DOI: 10.1109/41.873212.
  • [18] Akin B., Orguner U., Toliyat H.A., Rayner M., Low order PWM inverter harmonics contributions to the inverter-fed induction machine fault diagnosis, IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 610–619 (2008), DOI: 10.1109/TIE.2007.911954.
  • [19] Cruz S.M., Stefani A., Filippetti F., Cardoso A.J.M., A new model-based technique for the diagnosis of rotor faults in RFOC induction motor drives, IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4218–4228 (2008), DOI: 10.1109/TIE.2008.2003365.
  • [20] Bossio G.R., De Angelo C.H., Garcia G.O., Solsona J.A., Valla M.I., Effects of rotor bar and end-ring faults over the signals of a position estimation strategy for induction motors, IEEE transactions on industry applications, vol. 41, no. 4, pp. 1005–1012 (2005), DOI: 10.1109/TIA.2005.851038.
  • [21] Ellini A., Filippetti F., Franceschini G., Tassoni C., Closed-loop control impact on the diagnosis of induction motors faults, IEEE transactions on Industry Applications, vol. 36, no. 5, pp. 1318–1329 (2000), DOI: 10.1109/28.871280.
  • [22] Bellini A., Concari C., Franceschini G., Tassoni C., Different procedures for the diagnosis of rotor fault in closed loop induction motors drives, In 2007, IEEE International Electric Machines and Drives Conference, vol. 2, pp. 1427–1433 (2007), DOI: 10.1109/IEMDC.2007.383638.
  • [23] Ouachtouk I., El Hani S., Guedira S., Dahi K., Detection and classification of broken rotor bars faults in induction machine using K-means classifier, In 2016, International Conference on Electrical and Information Technologies (ICEIT), pp. 180–185 (2016), DOI: 10.1109/EITech.2016.7519586.
  • [24] Wu Y., An Q., Online diagnosis of broken rotor bar fault of squirrel-cage induction motor using a magnetic field measuring coil, IEEJ Transactions on Electrical and Electronic Engineering, vol. 15, no. 2, pp. 291–303 (2020), DOI: 10.1002/tee.23056.
  • [25] Nakamura H., Pandarakone S.E., Mizuno Y., A novel approach for detecting broken rotor bar around rated rotating speed using frequency component and clustering, IEEJ Transactions on Electrical and Electronic Engineering, vol. 11, pp. S116-S122 (2016), DOI: 10.1002/tee.22343.
  • [26] Hassan O.E., Amer M., Abdelsalam A.K., Williams B.W., Induction motor broken rotor bar fault detection techniques based on fault signature analysis–a review, IET Electric Power Applications, vol. 12, no. 7, pp. 895–907 (2018), DOI: 10.1049/iet-epa.2018.0054.
  • [27] Sousa K.M., da Costa I.B.V., Maciel E.S., Rocha J.E., Martelli C., da Silva J.C.C., Broken bar fault detection in induction motor by using optical fiber strain sensors, IEEE Sensors Journal, vol. 17, no. 12, pp. 3669–3676 (2017), DOI: 10.1109/jsen.2017.269596.
  • [28] Dorrell D.G., Thomson W.T., Roach S., Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors, IEEE Transactions on Industry applications, vol. 33, no. 1, pp. 24–34 (1997), DOI: 10.1109/28.567073.
  • [29] Rajamany G., Srinivasan S., Neural Network Approach for Inter-turn Short-Circuit Detection in Induction Motor Stator Winding, In Artificial Intelligence and Evolutionary Computations in Engineering Systems, Springer, Singapore, pp. 537–550 (2018), DOI: 10.1007/978-981-10-7868-2_52.
  • [30] Rajamany G., Srinivasan S., Rajamany K., Natarajan R.K., Induction motor stator interturn short circuit fault detection in accordance with line current sequence components using artificial neural network, Journal of Electrical and Computer Engineering (2019), DOI: 10.1155/2019/4825787.
  • [31] Rajamany G., Rajamany K., Natarajan R.K., Negative Sequence Current Compensation for Induction Motor Stator Inter-Turn Short Circuit and Off-Diagonal Term in Sequence Impedance Matrix as Fault Indicator, Journal of Electrical Engineering Technology, pp. 1–8 (2021), DOI: 10.1007/s42835-021-00730-8.
  • [32] Aswad R.A., Jassim B.M., Open-circuit fault diagnosis in three-phase induction motor using model-based technique. Archives of Electrical Engineering, vol. 69, no. 4 (2020), DOI: 10.24425/aee.2020.134632.
  • [33] Patel R.K., Giri V.K., Condition monitoring of induction motor bearing based on bearing damage index, Archives of Electrical Engineering, vol. 66, no. 1, pp. 105–119 (2017), DOI: 10.1515/aee-2017-0008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58c9f374-dcc9-4f6f-b762-3f2b2d39c95d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.