PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of lead ions onto chemically activated carbon from waste tire char and optimization of the process using response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tires play an important role in the automobile industry. However, their disposal when worn out has adverse effects on the environment. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH onto pyrolytic char. Adsorption studies on lead onto chemically activated carbon were carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/100 ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found out that the adsorption capacity increased with an increase in adsorbent dosage, contact time, pH, and decreased with an increase in lead concentration and temperature. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, X-ray Diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope were used to characterize the pyrolytic carbon char before and after activation. The numerical optimization analysis results showed that the maximum adsorption capacity of 93.176 mg/g was obtained at adsorbent dosage of 0.97 g/100 ml, pH 7, contact time of 115.27 min, initial metal concentration of 100 mg/and temperature of 25°C. FTIR and TGA analysis showed the presence of oxygen containing functional groups on the surface of the activated carbon produced and that the weight loss during the activation step was negligible.
Rocznik
Strony
92--103
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Chemical Engineering, Vaal University of Technology, South Africa
  • Department of Chemical Engineering, Vaal University of Technology, South Africa
autor
  • Department of Chemical Engineering, Vaal University of Technology, South Africa
Bibliografia
  • 1. Aftab, T., Bashir, F., Khan, R.A. & Iqbal, J. (2016). Treatment of color through the adsorption efficiency of waste tire- -derived char using response surface methodology, Desalination and Water Treatment, 57, 22, pp. 10324-10332, DOI: 10.1080/19443994.2015.1040460.
  • 2. Ahmaruzzaman, M. & Gupta, V.K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Industrial & Engineering Chemistry Research, 50, 24, pp. 13589-13613, DOI: 10.1021/ie201477c.
  • 3. Al-Rahbi, A.S. & Williams, P.T. (2016). Production of activated carbons from waste tyres for low temperature NOx control, Waste Management, 49, pp. 188-195, DOI: 10.1016/j. wasman.2016.01.030.
  • 4. Amini, M., Younesi, H., Bahramifar, N., Lorestani, A.A.Z., Ghorbani, F., Daneshi, A. & Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueou solution by Aspergillus niger, Journal of Hazardous Materials, 154, 1-3, pp. 694-702, DOI: 10.1016/j. jhazmat.2007.10.114.
  • 5. Ariyadejwanich, P., Tanthapanichakoon, W., Nakagawa, K., Mukai, S. & Tamon, H. (2003). Preparation and characterization of mesoporous activated carbon from waste tires, Carbon, 41, 1, pp. 157-164, DOI: 10.1016/S0008-6223(02)00267-1.
  • 6. Betancur, M., Martínez, J.D. & Murillo, R. (2009). Production of activated carbon by waste tire thermochemical degradation with CO2, Journal of Hazardous Materials, 168, 2-3, pp. 882-887, DOI: 10.1016/j.jhazmat.2009.02.167.
  • 7. Garg, U.K., Kaur, M., Garg, V. & Sud, D. (2008). Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach, Bioresource Technology, 99, 5, pp. 1325-1331, DOI: 10.1016/j. biortech.2007.02.011.
  • 8. Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A. & Gupta, V.K. (2015). Modelling of competitive ultrasonic assisted removal of the dyes - methylene blue and safranin-O using Fe3O4 nanoparticles, Chemical Engineering Journal, 268, pp. 28-37, DOI: 10.1016/j.cej.2014.12.090.
  • 9. Ko, D.C., Mui, E.L., Lau, K.S. & McKay, G. (2004). Production of activated carbons from waste tire-process design and economic analysis, Waste Management, 24, 9, pp. 875-888, DOI: 10.1016/j. wasman.2004.03.006.
  • 10. Kotkowski, T., Cherbanski, R. & Molga, E. (2018). Acetone adsorption on CO2-activated tyre pyrolysis char - thermogravimetric analysis, Chemical & Process Engineering, 39, 2, pp. 233-246, DOI: 10.24425/122946.
  • 11. Molino, A., Erto, A., Natale, F.D., Donatelli, A., Iovane, P. & Musmarra, D. (2013). Gasification of granulated scrap tires for the production of syngas and a low-cost adsorbent for Cd(II) removal from wastewaters, Industrial & Engineering Chemistry Research, 52, 34, pp. 12154-12160, DOI: 10.1021/ie4012084.
  • 12. Montgomery, D.C. (2001). Design and analysis of experiments, John Wiley and Sons Ltd, New York 2001.
  • 13. Mui, E.L., Ko, D.C. & McKay, G. (2004). Production of active carbons from waste tyres - a review, Carbon, 42, 14, pp. 2789-2805, DOI: 10.1016/j.carbon.2004.06.023.
  • 14. Mui, E.L.K., Cheung, W.H., Valix, M. & McKay, G. (2010). Mesoporous activated carbon from waste tyre rubber for dye removal from effluents, Microporous and Mesoporous Materials, 130, 1-3, pp. 287-294, DOI: 10.1016/j.micromeso.2009.11.022.
  • 15. Murillo, R., Aylón, E., Navarro, M., Callén, M., Aranda, A. & Mastral, A. (2006). The application of thermal processes to valorise waste tyre, Fuel Processing Technology, 87, 2, pp. 143-147, DOI: 10.1016/j.fuproc.2005.07.005.
  • 16. Park, J., Ok, Y.S., Kim, S., Cho, J., Heo, J., Delaune, R.D. & Seo, D. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142, pp. 77-83, DOI: 10.1016/j.chemosphere.2015.05.093.
  • 17. Pradhan, B.K. & Sandle, N. (1999). Effect of different oxidizing agent treatments on the surface properties of activated carbons, Carbon, 37, 8, pp. 1323-1332, DOI: 10.1016/S0008-6223(98)00328-5.
  • 18. Rao, H.J., King, P. & Kumar, Y.P. (2016). Experimental investigation on adsorption of lead from aqueous solution using activated carbon from the waste rubber tire: optimization of process parameters using central composite design, Rasayan Journal of Chemistry, 9, 2, pp. 254-277.
  • 19. Rudniak, L. & Machniewski, P.M. (2017). Modelling and experimental investigation of waste tyre pyrolysis process in a laboratory reactor, Chemical and Process Engineering, 38, 3, pp. 445-454, DOI: 10.1515/cpe-2017-0034.
  • 20. Rutto, H. & Enweremadu, C. (2012). Dissolution of a South African calcium based material using urea: an optimized process, Korean Journal of Chemical Engineering, 9, pp. 1-8, DOI: 10.1007/ s11814-011-0136-z.
  • 21. Saleh, T.A. & Gupta, V.K. (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, Journal of Colloid and Interface Science, 371, 1, pp. 101-106, DOI: 10.1016/j.jcis.2011.12.038.
  • 22. Saleh, T.A., Al-Saadi, A.A. & Gupta, V.K. (2014). Carbonaceous adsorbent prepared from waste tires: experimental and computational evaluations of organic dye methyl orange, Journal of Molecular Liquids, 191, pp. 85-91, DOI: 10.1016/j. molliq.2013.11.028.
  • 23. Saleh, T.A., Gupta, V.K. & Al-Saadi, A.A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: experimental and computational study, Journal of Colloid and Interface Science, 396, pp. 264-269, DOI: 10.1016/j. jcis.2013.01.037.
  • 24. Saleh, T.A. & Gupta, V.K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: a review, Advances in Colloid and Interface Science, 211, pp. 93-101, DOI: 10.1016/j.cis.2014.06.006.
  • 25. Salehin, S., Aburizaiza, A.S. & Barakat, M. (2016). Activated carbon from residual oil fly ash for heavy metals removal from aqueous solution, Desalination and Water Treatment, 57, 1, pp. 278-287, DOI: 10.1080/19443994.2015.1006824.
  • 26. San Miguel, G., Fowler, G.D. & Sollars, C.J. (2003). A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon, 41, 5, pp. 1009-1016, DOI: 10.1016/S0008-6223(02)00449-9.
  • 27. Saravanan, R., Karthikeyan, S., Gupta, V.K., Sekaran, G., Narayanan, V. & Stephen, A. (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination, Materials Science and Engineering, 33, 1, pp. 91-98, DOI: 10.1016/j.msec.2012.08.011.
  • 28. Saravanan, R., Mansoob, K.M., Gupta, V.K., Mosquera, E., Gracia, F., Narayanan, V. & Stephen, A. (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents, Journal of Colloid and Interface Science, 452, pp. 126-133, DOI: 10.1016/j.jcis.2015.04.035.
  • 29. Seng-eiad, S. & Jitkarnka, S. (2016). Untreated and HNO3-treated pyrolysis char as catalysts for pyrolysis of waste tire: in-depth analysis of tire-derived products and char characterization, Journal of Analytical and Applied Pyrolysis, 122, pp. 151-159, DOI: 10.1016/j.jaap.2016.10.004.
  • 30. Sharma, V.K., Mincarini, M., Fortuna, F., Cognini, F. & Cornacchia, G. (1998). Disposal of waste tyres for energy recovery and safe environment-review, Energy Conversion and Management, 39, 5-6, pp. 511-528, DOI: 10.1016/S0196-8904(97)00044-7.
  • 31. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H. & Balas, A. (2012). Progress in used tyres management in the European Union: a review, Waste Management, 32, 10, pp. 1742-1751, DOI: 10.1016/j.wasman.2012.05.010.
  • 32. Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. (2008). Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology, Journal of Hazardous Materials, 153, 1-2, pp. 709-717, DOI: 10.1016/j.jhazmat.2007.09.014.
  • 33. Uzun, Y. & Sahan, T. (2017). Optimization with response surface methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus squamosus fungi as a new biosorbent, Archives of Environmental Protection, 43, 2, pp. 37-43, DOI: 10.1515/aep-2017-0015.
  • 34. Zulkali, M.M.D., Ahmad, A.L. & Norulakmal, N.H. (2006). Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution, Bioresource Technology, 97, 1, pp. 21-25, DOI: 10.1016/j.biortech.2005.02.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58c9928d-59f0-4214-ade0-709aa63c1a0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.