PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation method for flow boiling and flow condensation of R134a and R1234yf in conventional and small diameter channels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of calculations performed using the authors’ model to predict the heat transfer coefficient during flow boiling for two refrigerants R134a and R1234yf. The experimental data from various past studies have been collected and the calculations have been conducted for the full range of quality variation and a wide range of mass velocity. The aim of the study was to test the sensitivity of the in-house flow boiling and flow condensation model. The importance of taking into account the surface tension as the parameter exhibiting its importance in case of the flow in minichannels, as well as the influence of the reduced pressure were analysed. The obtained numerical results show good consistency with those recorded in the experiments.
Rocznik
Tom
S 1
Strony
141--148
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, ul. Narutowicza 11/12, 80-233 Gdansk Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, ul. Narutowicza 11/12, 80-233 Gdansk Poland
Bibliografia
  • 1. United Nations Environment Program (UNEP) Montreal Protocol on Substances that Deplete the Ozone Layer, 1997.
  • 2. IPPC, Climate Change, Cambridge University Press, Cambridge, United Kingdom, 2001.
  • 3. Ghodbane M.: An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning, Int. Proceedings of International Congress and Exposition, Detroit, Paper no. 1999-01-0874, Warrendale, PA.
  • 4. Lorentzen G.: Revival of carbon dioxide as refrigerant, Int. J. Refrigeration 17 (3), 1994, pp. 292-301.
  • 5. Zhao Y., Liang Y., Sun Y., Chen J.: Development of a mini-channel evaporator model using R1234yf as working fluid, 35, 2012, pp. 2166-2178.
  • 6. Minor B., Spatz M.: HFO-1234yf low GWP refrigerant update, Int. International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA. Paper no 2349.
  • 7. Refprop v 9.0, National Institute of Standards (NIST), 2010.
  • 8. Park K. J., Jung D.: Nucleate boiling heat transfer coefficients or R1234yf on plain and low fin surfaces, Int. J. Refrigeration 33 (3), 2010, pp. 553-557.
  • 9. Lu M-C., Tong J-R., W C-C.: Investigation of the twophase convective boiling of HFO-1234yf in a 3.9 mm diameter tube, Int. J. Heat and Mass Transfer, 65, 2013, pp. 545-551.
  • 10. Del Col D., Bortolini S., Torresin D., Cavallini A.: Flow boiling of R1234yf in a 1 mm diameter channel, Int. J. of Refrigeration, 36, 2013, pp. 353-362.
  • 11. Satioh S., Dang C., Nakamura Y., Hihara E.: Boiling heat transfer of HFO-1234yf flowing in a smooth smalldiameter horizontal tube, Int. J. Refrigeration, 33, 2011, pp. 1846-1853.
  • 12. Copetti J. B., Macaganan M. H., Zinani F.: Experimental study on R-600a boiling in 2.6 mm tube, Int. J. Refrigeration, 33, 2013, pp. 325-334.
  • 13. Kwang-Il Choi, Jong Taek Oh, Kiyoshi Satio, Jong Soo Jeong: Comparison of Heat Transfer Coefficient during Evaporation of Natural Refrigerants and R-1234yf in Horizontal Small Tube, Int. J. Refrigeration, 2014, 41, pp. 210–218.
  • 14. Kundu A., Kumar R., Gupta A.: Heat transfer characteristic and flow pattern during two-phase flow boiling of R134a and R407C in a horizontal smooth tube, Experimental Thermal and Fluid Science, 57, 2014, pp. 344-352.
  • 15. Xu Y., Fang X., Li G., Li D.: An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations, Int. J. Heat and Mass Transfer, 92, 2016, pp. 1143-1157.
  • 16. Mancin S., Diani A., Rossetto L.: R134a flow boiling heat transfer coefficient and pressure drop inside 3.4 mm ID microfin tube, Energy Proceedia, 45, 2014, pp. 608-615.
  • 17. Tibirçá C. B., Ribatski G.: Flow boiling heat transfer of R134a and R245fa in 2.3 mm tube, Int. J. Heat and Mass Transfer, 53, 2010, pp. 2459-2468.
  • 18. Diani A., Mancin S., Rossetto L.: Flow boiling heat transfer of R1234yf inside 3.4 mm ID microfin tube, Experimental Thermal and Fluid Science, 66, 2015, pp. 127-136.
  • 19. Owhaib W., Martin-Callizo C., Palm B.: Evaporative heat transfer in vertical circular microchannels, Applied Thermal Engineering, 24, 2004, pp. 1241-1253.
  • 20. Shiferaw D., Karayiannis T. G., Kenning D. B. R.: Flow boiling in a 1.1 mm tube with R134a: experimental results and comparison with model, Int. J. Thermal Sciences, 48, 2009, pp. 331-341.
  • 21. Martin-Callizo C., Ali R., Palm B.: New experimental results of flow boiling of R134a in vertical microchannel, Heat Transfer Conference Proceedings, Edinburgh 10-11 September, 2007, UK.
  • 22. Consolini L., Thome J. R.: Micro-channel flow boiling heat transfer or R134a, R236fa and R245fa, Microfluid Nanofluids 6, 2009, pp. 731-746.
  • 23. Mahmoud M. M., Kenning D. B. R., Karayiannis T. G.: Single and two phase heat transfer and pressure drop in a 0.52 mm vertical metallic tube, 7th Int. Conference in Enhanced, Compact and Ultra-compact Heat Exchangers: From Microscale Phenomena to Industrial Applications, September 13-18, Heredia, Costa Rica, 2012.
  • 24. Ong C. I., Thome J. R.: Flow boiling heat transfer of R134a, R236f and R245fa in a horizontal 1.030 mm circular channel, Exp. Therm. Fluid Sci., 33, 2009, pp. 651-663.
  • 25. Anwar Z., Palm B., Khodabandeh R.: Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions, Experimental Thermal and Fluid Science, 66, 2015, pp. 137-149.
  • 26. Mortada S., Zoughaib A., Arzano-Daurelle C., Clodic D.: Boiling heat transfer and pressure drop of HFC-134a and R-1234yf in minichannels for low mass fluxes, Int. J. Refrigeration, 35, 2012, pp. 962-973.
  • 27. Ribatski G.: A critical overview on the recent literature concerning flow boiling and two – phase flows inside microscale channels, ECI 8th Int. Conference on Boiling and Condensation Heat Transfer, 3 – 7 June 2012, Lausanne, Switzerland.
  • 28. Tibirçá C. B., Ribatski G.: Flow boiling in micro-scale channels – Synthesized literature review, Int. J. Refrigeration, 36, 2013, pp. 301 – 324.
  • 29. Sardeshpande M., Ranade V.: Two – phase flow boiling in small channels: A brief review, Sadhana, 38, 2013, pp. 1083 – 1126.
  • 30. Alagesan V.: Flow boiling heat transfer in mini and micro channels – A state of the art review, Int. J. ChemTech Research, 4, 2012, pp. 1247 – 1259.
  • 31. Mikielewicz D., Mikielewicz J., Tesmar J.: Improved semiempirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes, International Journal of Heat and Mass Transfer, 50(19-20), 2007, pp. 3949-3956.
  • 32. Mikielewicz D., Andrzejczyk R., Jakubowska B., Mikielewicz J.: Analytical model with non-adiabatic effects for pressure drop and heat transfer during boiling and condensation flows in conventional channels and minichannels, Heat Transfer Engineering, 37(13-14), 2016, pp. 1158-1171.
  • 33. Muller-Steinhagen R., Heck K.: A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Progress, 20, 1986.
  • 34. Cooper M. G.: Saturation nucleate pool boiling; a simple correlation, Int. Chem. Eng. Symposium 1, 86, 1984, pp. 785 – 793.
  • 35. Kew P., Cornwell K.: Correlations for the prediction of boiling heat transfer in small diameter channels, Applied Thermal Engineering, 17, 8 – 10, (1997), 705 – 715.
  • 36. Deja M., Siemiątkowski M.S.: Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing, 2013, Vol.24, No.4, pp. 831–846.
  • 37. Szłapczyński R.: Evolutionary Planning of Safe Ship Tracks in Restricted Visibility. Journal of Navigation, 2015, Vol.68, No.1, pp.39-51.
  • 38. Stolarski T.A.: Wear of water-lubricated composite materials. Wear, 1980, Vol.58, No.1, pp. 103-108.
  • 39. Jakubowski M.: Influence of pitting corrosion on fatigue and corrosion fatigue of ship and offshore structures. Part II: Load - pit crack interaction. Polish Maritime Research, 2015, Vol.22, No.3, pp. 57-66.
  • 40. Ambroziak A., Kłosowski P.: Mechanical properties for preliminary design of structures made from PVC coated fabric. Construction and Building Materials, 2014, 50, pp. 74-81.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58c7078b-69f8-43c3-a4e8-23948ae5b101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.