Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the problem of an axially moving microbeam subjected to sinusoidal pulse heating and an external transverse excitation is solved. The generalized thermoelasticity theory with one relaxation time is used to solve this problem. An analytical technique based on the Laplace transform is used to calculate the vibration of deflection and the temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the pulse-width of thermal vibration, moving speed and the transverse excitation are studied and discussed on the lateral vibration, temperature, displacement and bending moment of the beam.
Czasopismo
Rocznik
Tom
Strony
167--178
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Mathematics, College of Science and Arts, University of Aljouf, El-Qurayat, Saudi Arabia
autor
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
Bibliografia
- 1. Avsec J., Oblak M., 2007, Thermal vibrational analysis for simply supported beam and clamped beam, Journal of Sound and Vibration, 308, 514-525
- 2. Biot M., 1956, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics, 27, 240-253
- 3. Chakraborty G., Mallik A.K., 2000, Wave propagation in and vibration of a traveling beam with and without non-linear effects, Journal of Sound and Vibration, 236, 277-290
- 4. Chang W.P., Wan S.M., 1986, Thermomechanically coupled nonlinear vibration of plates, International Journal of Non-Linear Mechanics, 21, 375-389
- 5. Chen L.Q., Yang X.D., 2005, Stability in parameteric resonace of axially moving viscoelastic beams with time-dependent speed, Journal of Sound and Vibration, 184, 879-891
- 6. Ding H., Chen L.-Q., 2011, Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams, Acta Mechanica Sinica, 27, 426-437
- 7. Green A.E., Lindsay K.A., 1972, Thermoelasticity, Journal of Elasticity, 2, 1-7
- 8. Houston B.H., Photiadis D.M., Vignola J.F., Marcus M.H., Liu X., Czaplewski D., Sekaric L., Butler J., Pehrsson P., Bucaro J.A., 2004, Loss due to transverse thermoelastic currents in microscale resonators, Materials Science and Engineering A, 370, 407-411
- 9. Kong L., Parker G., 2004, Approximate eigensolutions of axially moving beams with small flexural stiffness, Journal of Sound and Vibration, 276, 459-469
- 10. Kulkarni R.G., 2008, Solving sextic equations, Atlantic Electronic Journal of Mathematics, 3, 56-60
- 11. Lord H.W., Shulman Y., 1967, A generalized dynamical theory of thermoelasticity, Journal of Mechanics and Physics of Solids, 15, 299-309
- 12. Manoach E., Ribeiro P., 2004, Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams, International Journal of Mechanical Sciences, 46, 1589-1606
- 13. Mote C.M., Jr., 1965, A study on band saw vibrations, Journal of The Franklin Institute, 279, 430-444
- 14. Tabarrok B., Leech C.M., 1965, On the dynamics of an axially moving beam, Journal of The Franklin Institute, 279, 201-220
- 15. Tzou D.Y., 1996, Macro-to-Microscale Heat Transfer: the Lagging Behavior, Washington, DC, Taylor & Francis
- 16. Yang X.D., 2007, Determination of the natural frequencies of axially moving beams by the method of multiple scales, Journal of Shanghai Jiaotong University, 11, 251-254
- 17. Zenkour A.M., Abouelregal A.E., 2014, The effect of two temperatures on a functionally graded nanobeam induced by a sinusoidal pulse heating, Structural Engineering and Mechanics, 51, 199-214
- 18. Zenkour A.M., Abouelregal A.E., Abbas I.A., 2014, Generalized thermoelstic vibration of an axially moving clamp
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58c6ab88-766e-4a60-b6bc-df8cbf54c8ae