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DROPPING LIQUID TIME-DEPENDENT FLOW IN A PIPE 
OF LENGTHWISE LINEARLY VARYING DIAMETER 

Introduction 

The objective of this paper is to discuss briefly unsteady flow of incompressible 

liquid in a rigid pipe the diameter of which is changed lengthwise by linear law. 

Within these conditions a differential equation was set up. To integrate the former 

boundary conditions were defined for speedup period of liquid flow. Instantaneous 

averaged velocity values for a number of cross-sections were plotted, stabilization 

rate and period were determined. 

The problem is particularly difficult when the flow is slow and walls of the pipe 

and the liquid are deformable. A set of equations characterizing interaction of pres-

sure and rate change have been established for these conditions. A slowing non-

steady flow in a narrowing conical pipe was studied. Fluid medium and walls of 

the pipe are considered as elastic materials. The hydraulic shock phenomena 

in case of instantaneous closure of a valve mounted at the end of the conical pipe 

connected to the reservoir has been examined. Initial and boundary conditions 

for the problem solution have been set up. In accordance with these conditions 

obtained differential equations have been integrated using the method of separable 

variables. Solutions of equations were sought for in the form of infinite series 

wherein values of participating factors have been obtained from respective bounda-

ry conditions. 

This solution enables to obtain the measure of pressure rise at the end of a conical 

pipe in case the valve is suddenly closed. The suggested technique enables to solve 

similar in nature problems in case of different boundary conditions. 

The article studies unsteady flow of incompressible liquid in a rigid pipe of 

a lengthwise linearly varying diameter. Boundary conditions in acceleration start-

ing time were defined to integrate a differential equation of flow derived for such 

conditions. 

Instantaneous, sectional, and averaged velocity diagrams have been plotted, sta-

bilization velocity and time determined. The problem is particularly a very com-

plicated one for slow flow when the pipe wall and the fluid are deformable [1-5]. 
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For these conditions a set of equations describing relation between pressure and 

velocity change was derived. To this end a section dx is separated on the pipe 

and a differential equation of its motion is formed (Fig. l). 

 

 

Fig. 1. Separated section of the pipe 
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where ΔM  is the mass of the separated section 
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ΔF  is a pressure force along flow 
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ΔT  is a friction force in reverse direction 
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τ0 is a friction stress developed at the fixed pipe wall. 

Substituting ΔM, ΔF, and ΔT in Eq. (1) we have 

 
2

cos
2 0 


xrx

P

dt

dV
+




−=  (5) 

The second equation is obtained from one-dimensional flow continuity condition 

[3, 5] 
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After opening parentheses, we get 
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Now members of the above equation are calculated 
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Substituting Eq. (8), (9), and (10) in Eq. (7), we have 
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 is shock wave propagation velocity at the section of r radius. 

Since the pipe’s diameter along its length is variable, then the shock wave 

propagation velocity also is variable [1, 2]. 

Eqs. (5) and (11) for liquid medium and the pipe’s wall material elasticity condi-

tions form a set of real fluid unsteady flow equations in a pipe of a lengthwise line-

arly diameter. 
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When we deal with an ideal liquid, then between layers of the liquid and fixed 

walls of the pipe no friction stress is developed and as a result Eq. (12) takes more 

simple expression 
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where 
2


tgxr = . 

To determine hydrodynamic parameters V(x, t), P(x, t) of the cross section 

in case of unsteady flow, initial and boundary conditions are added to the set of 

equations (13). Let us now study the shock phenomena in a lengthwise narrowing 

conical pipe of  length l at the initial point of which the pressure (that is in the 

basin) is constant and equal to P0, and in t = 0 moment the valve installed at the 

end point is instantaneously closed. In such conditions the initial and boundary 

conditions of the set equations (13) are 

 V(l, t) = 0,    P(0, t) = P0    (0 ≤ x ≤ l) (14) 
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Eliminating P(x, t) from Eq. (13), we get [6] 
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Conditions (14) and (15) are transformed to the following conditions: 

 V(l, t) = 0,     V(0, t) = 0       (0 ≤ x ≤ l) (17) 
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Solution of Eq. (18) is sought as V(x, t) = T(t) X(x). In this case instead 

of Eq. (16) we will have two independent equations relative to x and t variables. 

 Ttt + λ2a2T = 0 (19) 
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Where λ are sought for arbitrary constant which subject to be determined. 
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Solutions of Eq. (20) are linearly independent from each functions ).(
2

3
2

1

xJx 
−

 

and ).(
2

3
2

1

xNx 
−

. ).(
2

3 xN   function have a singularity at x = 0 point. Solution of 

the following equation is their linear combination. 

 )]()([)(
2

3

0 2

3
2

1

xNBxJAxxX kk

k

kk  +=


=

−

 (21) 

Where J and N are Bessel and Neumann functions, respectively [6]. 

V(x, t) at x = 0 point is finite, therefore Bk  = 0 and we have 
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From the boundary conditions we obtain X(0) = 0 and X(l) = 0. The first of 

these conditions always satisfies, as for the second one we get  
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Calculating the value of 
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Solving of Eq. (19) in the form of infinite, we have [6] 
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Using Eq. (22) and (24) the general solution of the problem is presented  
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From the initial condition (18) it follows that Bk = 0 and Ak is obtained from the 

below equation 
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In order to determine Ak coefficients two parts of Eq. (26) are multiplied by 

)(
2

3
2

3

xJx n  function and integrated from 0 to l interval 

dxxJxxJAdxxJx

tg

r
V nk

l

k

l

nn )()()(

2
2

3

0 0 0 2

3

2

3
2

1

2

2
0

0 
   



=

−

=  

Using the condition of orthogonality (23) of functions J, we have 

 =
−

l

n
nn x

l
JAdxxJx

tg

r
V

0

2

2

3

2

3
2

1

2

2
0

0 )()(

2





 

from which 

 
−

=

l

n

n

n dxxJx

xJtg

rV
A

0 2

3
2

1

2

2

3
2

2
00 )(

)(
2






 (27) 

Substituting values of Bk and Ak factors in Eq. (25) the value of V(x, t) function 

is obtained 
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To determine P(x, t) the first equation of the set (13) is integrated from 0 to x 
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Taking into consideration that 
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 = , from the last equation we obtain the value 

of P(x, t) function at x = l section. 
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Conclusion 

The obtained set of equations of unsteady flow running in a pipe of lengthwise 

linearly varying diameter enables to obtain changing values of pressure and velo- 

city, formed, in the framework of the given problem, for the initial and boundary 

conditions. Particularly, in case of instantaneous shutting of the valve installed 

at the terminal point of the pipe, initial and boundary conditions have been set up. 

For these conditions a set of the unsteady flow differential equations were integrat-

ed whereby regularities of the pressure and velocity variation along the entire 

length of the pipe, in particular in the last section, have been found. 
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Abstract 

The objective of this paper is to discuss briefly unsteady flow of incompressible liquid in a rigid pipe 

the diameter of which is changed lengthwise by linear law. Within these conditions a differential 
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equation was set up. To integrate the former boundary conditions were defined for speedup period of 

liquid flow. Instantaneous averaged velocity values for a number of cross-sections have been plotted, 

stabilization rate and period have been determined. The problem is particularly difficult when the 

flow is slow and walls of the pipe and the liquid are deformable. A set of equations characterizing 

interaction of pressure and rate change have been established for these conditions. A slowing non- 

-steady flow in a narrowing conical pipe was studied. Fluid medium and walls of the pipe are consid-

ered as elastic materials. The hydraulic shock phenomena in case of instantaneous closure of a valve 

mounted at the end of the conical pipe connected to the reservoir has been examined. Initial and 

boundary conditions for the problem solution have been set up. In accordance with these conditions 

obtained differential equations have been integrated using the method of separable variables. Solu-

tions of equations were sought for in the form of infinite series wherein values of participating factors 

have been obtained from respective boundary conditions. This solution enables to obtain the measure 

of pressure rise at the end of a conical pipe in case the valve is suddenly closed. The suggested 

technique enables to solve similar in nature problems in case of different boundary conditions. 

Przepływ spadającej cieczy zależny od czasu 
w rurze o podłużnie liniowo zmiennej średnicy 

Streszczenie 

Celem niniejszego artykułu jest zwięzłe omówienie nierównomiernego przepływu nieściśliwej cieczy 

w sztywnej rurze, której średnica jest podłużnie, liniowo zmienna. Przy tak określonych warunkach 

zostało wyprowadzone równanie różniczkowe. W celu zintegrowania dotychczasowych warunków 

brzegowych zostało określone przyspieszenie okresu przepływu cieczy. Uśrednione wartości prędko-

ści chwilowych dla wielu przekrojów zostały przedstawione na wykresach. Ponadto określono współ-

czynnik i okres stabilizacji. Problem ten jest szczególnie trudny, gdy przepływ jest powolny i ścianki 

rury są odkształcalne. Został określony układ równań charakteryzujących oddziaływanie ciśnienia 

i zmiany współczynników dla przyjętych warunków. Zbadano spowolnienie nierównomiernego prze-

pływu w rurze zwężonej stożkowo. Nośnik płynu i ściany rury rozpatrywano jako materiały spręży-

ste. Przeanalizowano zjawisko uderzenia hydraulicznego w przypadku chwilowego zamknięcia zawo-

ru, zamontowanego na końcu rury stożkowej, połączonej ze zbiornikiem. Zostały ustalone początko-

we 

i brzegowe warunki rozwiązania problemu. Zgodnie z tymi warunkami otrzymane równania różnicz-

kowe połączono z wykorzystaniem metody zmiennych rozłącznych. Rozwiązania równań były 

poszukiwane w postaci nieskończonej serii, w której wartości czynników uczestniczących zostały 

uzyskane z odpowiednich warunków brzegowych. To rozwiązanie pozwala na uzyskanie wartości 

wzrostu ciśnienia na końcu rury stożkowej w przypadku nagłego zamknięcia zaworu. Sugerowana 

technika pozwala rozwiązać podobne problemy w przypadku różnych warunków brzegowych. 


