PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameters’ Identification of Perzyna and Chaboche Viscoplastic Models for Aluminum Alloy at Temperature of 120◦C

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this paper is the parameters identification of the Perzyna and the Chaboche models for the aluminum alloy at elevated temperature. The additional purpose is comparison of the results for these viscoplastic models. The results have been verified by the numerical simulation of the laboratory tests. The material parameters have been calculated on the basis of the uniaxial tension test. The determination of the Perzyna model’s parameters has been made on the basis of the ideas presented in papers of Perzyna [14–16, 18]. Then the parameters identification of the Chaboche model has been performed using concept presented in [2, 5, 6]. The elastic and inelastic properties have been estimated using the non-linear approximation by the least-squares method in Marquardt-Levenberg variant [12, 13]. The correctness assessment of the performed approximation has been verified by correlation and determination coefficients.
Rocznik
Strony
291--–305
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering Department of Structural Mechanics and Bridge Structures Narutowicza 11/12, 80–233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering Department of Structural Mechanics and Bridge Structures Narutowicza 11/12, 80–233 Gdańsk, Poland
Bibliografia
  • 1. Ambroziak A., Kłosowski P., Nowicki M., Schmidt R., Implementation of continuum damage in elasto-viscoplastic constitutive equations, Task Quarterly, 10, 2, 207–220, 2006.
  • 2. Ambroziak A., Kłosowski P., The elasto-viscoplastic Chaboche model, Task Quarterly 10, 1, 49–61, 2006.
  • 3. Argyris J., Balmer H.A., Doltsinis I.St., On Shell Models for Impact Analysis, The Winter Annual Meeting of the American Society of Mechanical Engineers, 3, 443–456, 1989.
  • 4. Belytschko T., Wong B.L., Chiang H.Y., Improvements in Low-Order Shell Elements for Explicit Transient Analysis, The Winter Annual Meeting of the American Society of Mechanical Engineers, 3, 383–398, 1989.
  • 5. Chaboche J.L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, 5, 247–302, 1989.
  • 6. Chaboche J.L., Viscoplastic constitutive equations for the description of cyclic and anistropic behavior of metals, 17th Polish Conf. on Mechanics of Solid, Szczyrk, Bul. De l’Acad. Polonaise des Sciences, Serie Sc. Et Techn., 25, 33–42, 1977.
  • 7. Chapra S.C., Canale R.P., Numerical Methods for Engineers, McGraw-Hill Book Company, New York, 1988.
  • 8. Kłosowski P., Nonlinear numerical analysis and experimental tests of vibrations of elastic-viscoplastic plates and shells [in Polish], Monographs, Ed. Gdańsk University of Technology, Gdańsk, 1999.
  • 9. Kłosowski P., Woznica K., Nonlinear viscoplastic constitutive models in selected applications of structures analysis [in Polish], Ed. Gdańsk University of Technology, Gdańsk, 2007.
  • 10. Kłosowski P., Zagubień A., Woznica K., Investigation on rheological properties of technical fabric “Panama”, Arch. Appl. Mech., 73, 661–681, 2004.
  • 11. Lemaitre J., Chaboche J.L., Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.
  • 12. Levenberg K., A method for the solution of certain problems in least squares, Quart. Appl. Math., 2, 164–168, 1944.
  • 13. Marquardt D.W., An Algorithm for Least Squares Estimation of Parameters, Journal of the Society of Industrial and Applied Mathematics, 11, 431–441, 1963.
  • 14. Perzyna P., Fundamental problems in viscoplasticity, Advances in Mechanics, 9, 243–377, 1966.
  • 15. Perzyna P., On the constitutive equations for work-hardening and rate sensitive plastic materials, Proc. Vibr. Probl., 4, 281–290, 1963.
  • 16. Perzyna P., The constitutive equations for rate sensitive plastic materials, Quart. Appl. Mech., 20, 321–32, 1963.
  • 17. Perzyna P., The study of the dynamic behavior of rate sensitive plastic materials, Archives of Mechanics, 1, 15, 113–129, 1963.
  • 18. Perzyna P., Theory of viscoplasticity [in Polish], PWN, Warsaw, 1966.
  • 19. Rowley M.A., Thornton E.A., Constitutive Modeling of the Visco-Plastic Response of Hastelloy – X and Aluminium Alloy 8009, Jour. of Engng. Materials and Technology, 118, 19–27, 1996.
  • 20. Skrzypek J., Plasticity and creep [in Polish], PWN, Warsaw, 1986.
  • 21. Taylor J.R., Introduction to error analysis, PWN, Warsaw, 1995.
  • 22. Woznica K., Dynamique des structures elasto-viscoplastiques, Cahiers de M´ecanique, Lille, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58b847ae-81b3-4b2f-bb76-5a46ef8a5dea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.