PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green versatile micellar electrokinetic chromatographic method for determination of six antimicrobial and anti-inflammatory drugs in combined dosage forms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A fast reliable micellar electrokinetic methodology was investigated for the concurrent quantitation of six antimicrobial and anti-inflammatory drugs, namely, ciprofloxacin, dexamethasone, metronidazole, ornidazole, spiramycin and tinidazole. The method has the merits of rapidity, precision, and sensitivity. The separation was carried out in less than 7 min by applying a basic background electrolyte consisting of 25 mM disodium tetraborate buffer, pH 9 containing 50 mM SDS at 25 kV using photodiode array detector at 230 and 315 nm. The internal standard used during analysis was cromolyn sodium and validation was carried out following ICH guidelines. The proposed method showed linear response over the range from 0.5 to 10.0 μg mL⁻¹ reaching limits of detection and limits of quantitation in the ranges of 0.09–0.2 μg mL⁻¹ and 0.27–0.6 respectively. The method's greenness was estimated using the GAPI tool where excellent greenness was concluded. Co-formulated or single-ingredient commercial preparations were investigated and the results were statistically evaluated.
Rocznik
Strony
233--246
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
autor
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
  • Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
  • Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
Bibliografia
  • 1. Nelson, J. M.; Chiller, T. M.; Powers, J. H.; Angulo, F. J. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. J. Clin. Infect. Dis. 2007, 44(7), 977–80. https://doi.org/10.1086/512369.
  • 2. Werk, R.; Schneider, L. Ciprofloxacin in combination with metronidazole. Infect. J 1988, 16(4), 257–60. https://doi.org/10.1007/BF01650774.
  • 3. Boeckh, M.; Lode, H.; Deppermann, K. M.; Grineisen, S.; Shokry, F.; Held, R.; et al. Pharmacokinetics and serum bactericidal activities of quinolones in combination with clindamycin, metronidazole, and ornidazole. J. Antimicro. Agents Chemother. 1990, 34(12), 2407–14. https://doi.org/10.1128/aac.34.12.2407.
  • 4. Malhotra, M.; Sharma, J. B.; Batra, S.; Arora, R.; Sharma, S. Ciprofloxacin-tinidazole combination, fluconazole-azithromicin-secnidazole-kit and doxycycline-metronidazole combination therapy in syndromic management of pelvic inflammatory disease: a prospective randomized controlled trial. Indian J. Med. Sci. 2003, 57(12), 549–55, PMID: 14701947.
  • 5. Roland, P. S.; Anon, J. B.; Moe, R. D.; Conroy, P. J.; Wall, G. M.; Dupre, S. J.; et al. Topical ciprofloxacin/dexamethasone is superior to ciprofloxacin alone in pediatric patients with acute otitis media and otorrhea through tympanostomy tubes. J. Laryngoscope. 2003, 113(12), 2116–22. https://doi.org/10.1097/00005537-20031200000011.
  • 6. Poulet, P-P.; Duffaut, D.; Barthet, P.; Brumpt, I. Concentrations and in vivo antibacterial activity of spiramycin and metronidazole in patients with periodontitis treated with high-dose metronidazole and the spiramycin/metronidazole combination. J. Antimicrob. Chemother. 2005, 55(3), 347–51. https://doi.org/10.1093/jac/dki013.
  • 7. Chew, W. K.; Segarra, I.; Ambu, S.; Mak, J. W Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. J. Antimicro. Agents Chemother. 2012, 56(4), 1762–8. https://dx.doi.org/10.1128%2FAAC.05183-11.
  • 8. Kawas, G.; Marouf, M.; Mansour, O.; Sakur, A. A. Analytical methods of ciprofloxacin and its combinations review. Res. J. Pharm. Technol. 2018, 11(5), 2139–48. https://doi.org/10.5958/0974-360X.2018.00396.7.
  • 9. Zameeruddin, M. S.; Kalyankar, S. S.; Jadhav, S. B.; Kadam, V. S.; Bharkad, V. B. Review on analytical method validation of nitroimidazoles. World J.Pharm. Pharm. Sci. 2014, 3(3), 557–77.
  • 10. Sebastian, M. P.; Krishnakumar, K. A review of analytical methods for estimation of amoxicillin trihydrate and tinidazole in pharmaceutical formulations. Asian J. Res. Pharm. Sci. Biotech. 2017, 5(1), 1–5.
  • 11. Nguyen, T. D.; Le, H. B.; Dong, T. O.; Pham, T. D. Determination of fluoroquinolones in pharmaceutical formulations by extractive spectrophotometric methods using ion-pair complex formation with bromothymol blue. J. Anal. Methods Chem. 2018, 2018, 1–11. https://doi.org/10.1155/2018/8436948.
  • 12. Obaydo, R. H.; Sakur, A. A. Spectrophotometric strategies for the analysis of binary combinations with minor component based on isoabsorptive point’s leveling effect: an application on ciprofloxacin and fluocinolone acetonide in their recently delivered co-formulation. Spectrochim. Acta A. Mol. Biomol. Spectrosc. J. 2019, 219, 186–94. https://doi.org/10.1016/j.saa.2019.04.036.
  • 13. Eman, I.; Khamis, E. F.; Belal, S. F.; Moneim, M. M. A Sensitive inexpensive chromatographic determination of an antimicrobial combination in human plasma and its pharmacokinetic application. J. Chromatogr. B. 2018, 1097, 94–100. https://doi.org/10.1016/j.jchromb.2018.09.008.
  • 14. da Silva, D. C.; Oliveira, C. C. Development of micellar HPLC-UV method for determination of pharmaceuticals in water samples. J. Anal. Methods Chem. 2018, 2018(2), 1–12. https://doi.org/10.1155/2018/9143730.
  • 15. He, T.; Xu, Z.; Ren, J. Pressure-assisted electrokinetic injection stacking for seven typical antibiotics in waters to achieve μg/L level analysis by capillary electrophoresis with UV detection. Microchem. J. 2019, 146, 1295–300. https://doi.org/10.1016/j.microc.2019.02.057.
  • 16. Díaz-Quiroz, C. A.; Hernandez-Chavez, J. F.; Ulloa-Mercado, G.; Gortáres-Moroyoqui, P.; Martínez-Macías, R.; Meza-Escalante, E.; et al. Simultaneous quantification of antibiotics in wastewater from pig farms by capillary electrophoresis. J. Chromatogr. B. 2018, 1092, 386–93. https://doi.org/10.1016/j.jchromb.2018.06.017.
  • 17. Sversut, R. A.; Vieira, J. C.; Rosa, A. M.; Singh, A. K.; do Amaral, M. S.; Kassab, N. M. Improved UV spectrophotometric method for precise, efficient and selective determination of dexamethasone in pharmaceutical dosage forms, orbital: electron. J. Chem. 2015, 7(1), 5–9. http://dx.doi.org/10.17807/orbital.v7i1.630.
  • 18. Saad, M. N.; Essam, H. M.; Elzanfaly, E. S.; Amer, S. M. Economic chromatographic methods for simultaneous quantitation of some fluoroquinolones and corticosteroids present in different binary ophthalmic formulations. J. Liq. Chromatogr. Relat. Technol. 2020, 43(7–8), 271–81. https://doi.org/10.1080/10826076.2020.1725041.
  • 19. Ibrahim, F. A.; Elmansi, H.; Fathy, M. E. Green RP-HPLC method for simultaneous determination of moxifloxacin combinations: investigation of the greenness for the proposed method. Microchem. J. 2019, 148, 151–61. https://doi.org/10.1016/j.microc.2019.04.074.
  • 20. Saad, M. N.; Essam, H. M.; Elzanfaly, E. S.; Amer, S. M. A two-step optimization approach: validated RP-HPLC method for determination of gatifloxacin and dexamethasone in ophthalmic formulation. J. Chromatogr. Sci. 2020, 58(6), 504–10. https://doi.org/10.1093/chromsci/bmaa013.
  • 21. Essam, H. M.; Saad, M. N.; Elzanfaly, E. S.; Amer, S. M. Stepwise optimization and sensitivity improvement of green micellar electrokinetic chromatography method to simultaneously determine some fluoroquinolones and glucocorticoids present in various binary ophthalmic formulations. J. Biomed.Chromatogr. 2020, 34(11), e4941. https://doi.org/10.1002/bmc.4941.
  • 22. Abdelwahab, N. S.; Mohamed, M. A. Three new methods for resolving ternary mixture with overlapping spectra: comparative study. J.Chem. Pharm. Bull. 2017, 65(6), 558–65. https://doi.org/10.1248/cpb.c17-00132.
  • 23. Masood, Z.; Ansari, M. T.; Adnan, S.; Saeed, M.; Farooq, M.; Ahmad, M. Development and application of spectrophotometric method for quantitative determination of Metronidazole in pure and tablet formulations. Pak. J. Pharm. Res. 2016, 2(1), 28–32.
  • 24. Ranganathan, P.; Mutharani, B.; Chen, S-M.; Sireesha, P. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydr. Polym. J. 2019, 214, 317–27. https://doi.org/10.1016/j.carbpol.2019.03.053.
  • 25. Yang, M.; Guo, M.; Feng, Y.; Lei, Y.; Cao, Y.; Zhu, D.; et al. Sensitive voltammetric detection of metronidazole based on three-dimensional graphene-like carbon architecture/polythionine modified glassy carbon electrode. J. Electrochem. Soc. 2018, 165(11), B530. http://dx.doi.org/10.1149/2.1311811jes.
  • 26. Moussa, B. A.; El-Kady, E. F.; Mohamed, M. F.; Youssef, N. F. Greener thin-layer chromatographic solvents for the determination of pantoprazole sodium sesquihydrate, metronidazole and clarithromycin in pharmaceutical formulations used as triple therapy in Helicobacter infection. J. Planar Chromatogr. 2017, 30(6), 481–7. https://doi.org/10.1556/1006.2017.30.6.4.
  • 27. Morcoss, M.; Abdelwahab, N. S.; Ali, N. W.; Elsaady, M. T. Different chromatographic methods for simultaneous determination of diloxanide furoate, metronidazole and its toxic impurity. J. Iran. Chem. Soc. 2016, 13(9), 1643–51. https://doi.org/10.1007/s13738-016-0881-3.
  • 28. Dorn, C.; Kratzer, A.; Schießer, S.; Kees, F.; Wrigge, H.; Simon, P. Determination of total or free cefazolin and metronidazole in human plasma or interstitial fluid by HPLC-UV for pharmacokinetic studies in man. J. Chromatogr. B 2019, 1118, 51–4. https://doi.org/10.1016/j.jchromb.2019.04.025.
  • 29. Maslarska, V.; Tsvetkova, B.; Peikova, L.; Bozhanov, S. HPLC method for simultaneous determination of metronidazole and preservatives in vaginal gel formulation. J. Acta Chromatogr. 2018, 30(2), 127–30.
  • 30. Airado-Rodríguez, D.; Hernández-Mesa, M.; García-Campaña, A. M.; Cruces-Blanco, C. Evaluation of the combination of micellar electrokinetic capillary chromatography with sweeping and cation selective exhaustive injection for the determination of 5-nitroimidazoles in egg samples. J. Food Chem. 2016, 1213, 215–22. https://doi.org/10.1016/j.foodchem.2016.06.056.
  • 31. Bol’shakov, D.; Amelin, V.; Nikeshina, T. Identification and determination of antibacterial substances in drugs by capillary electrophoresis. J. Anal. Chem. 2016, 71(1), 94–101. https://doi.org/10.1134/S1061934815110039.
  • 32. Gauncar, F. L.; Kudchadkar, S. S. Development and validation of UV spectrophotometric method for determination of ofloxacin and ornidazole in combined dosage form using simultaneous equation method. World J. Pharm. Res. 2017, 6(8), 1026–1039ADSX. https://doi.org/10.20959/wjpr20178-8873.
  • 33. Patel, B. H. P.; Satish, A. Development and validation of analytical method for the estimation of ornidazole in pharmaceutical formulation. Int. Res. J. .Pharm. 2017, 8(11), 115–9.
  • 34. Sharma, B. R.; Shah, C. N. Analytical method validation and method development for simultaneous estimation for ornidazole and diloxanide furoate in pharmaceutical solid dosage form. Pharma. Sci. Monit. 2017, 8(1), 75–88.
  • 35. Gauncar, F. L.; Kudchadkar, S. S. Development and validation of RP-HPLC method for simultaneous estimation of ofloxacin and ornidazole in presence of ornidazole impurity in combined pharmaceutical dosage form. World J. Pharm. Res. 2017, 6(9Spec.Iss.), 604–20.
  • 36. El Demerdash, A. O.; Razeq, S. A. A.; Fouad, M. M.; El Sanabary, H. F. Densitometric and UV-spectrophotometric methods for simultaneous determination of spiramycin adipate in binary mixture with oxytetracycline-HCl or tetracycline-HCl. Int. Res. J. Pure Appl. Chem. 2018, 17(1), 1–21. https://doi.org/10.9734/IRJPAC/2018/44345.
  • 37. Mahmoudi, A. Efficient and simple HPLC method for spiramycin determination in urine samples and in pharmaceutical tablets. J. Sep. Sci.plus 2018, 1(4), 253–60. https://doi.org/10.1002/sscp.201800014.
  • 38. Katsidzira, R. M.; Wessels, A.; Aucamp, M. A novel RP-HPLC method for the detection and quantification of clarithromycin or spiramycin in bulk drug samples and dosage forms. Int. J. Pharm. Pharm. Sci. 2016, 8(12), 310–3. https://doi.org/10.22159/ijpps.2016v8i12.15058.
  • 39. Gbylik-Sikorska, M.; Gajda, A.; Nowacka-Kozak, E.; Posyniak, A. Simultaneous determination of 45 antibacterial compounds in mushrooms-Agaricus bisporus by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2019, 1587, 111–8. https://doi.org/10.1016/j.chroma.2018.12.013.
  • 40. Susakate, S.; Poapolathep, S.; Chokejaroenrat, C.; Tanhan, P.; Hajslova, J.; Giorgi, M.; et al. Multiclass analysis of antimicrobial drugs in shrimp muscle by ultra high performance liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2019, 27(1), 118–34. https://doi.org/10.1016/j.jfda.2018.06.003.
  • 41. Kowalski, P.; Olędzka, I.; Plenis, A.; Miękus, N.; Pieckowski, M.; Bączek, T. Combination of field amplified sample injection and hydrophobic interaction electrokinetic chromatography (FASI-HIEKC) as a signal amplification method for the determination of selected macrocyclic antibiotics. J. Anal. Chim. Acta 2019, 1046, 192–8.
  • 42. Kamal, A. H.; El-Malla, S. F. Factor space analysis and dual wavelength spectrophotometric methods for simultaneous determination of norfloxacin and tinidazole in tablet. J. Anal. Chem. Lett. 2018, 8(3), 393–404. https://doi.org/10.1080/22297928.2018.1470941.
  • 43. Fraihat, S. M. Green methods for the determination of nitrite in water samples based on a novel diazo coupling reaction. J.Green Process. Synth. 2017, 6(2), 245–248. https://doi.org/10.1515/gps-2016-0005.
  • 44. Nikodimos, Y.; Hagos, B. Electrochemical behaviour of tinidazole at 1, 4-benzoquinone modified carbon paste electrode and its direct determination in pharmaceutical tablets and urine by differential pulse voltammetry. J. Anal. Methods Chem. 2017, 2017, 1–10. https://doi.org/10.1155/2017/8518707.
  • 45. Meshram, D. B.; Priyanka, M.; Desai, S. D.; Tajne, M. R. Simultaneous determination of fluconazole and tinidazole in combined dose tablet using high performance thin layer chromatography. J. Chemica Sinica 2017, 8(1), 133–7.
  • 46. Mamatha, M.; Karnakar, N.; Sunil, R.; Middha, A. RP-HPLC method development and validation for simultaneous estimation of fluconazole and tinidazole in tablet dosage form. Eur. J. Biomed. Pharm. Sci. 2018, 5(8), 1–7.
  • 47. Ibrahim, A. M.; Hendawy, H. A. M.; Hassan, W. S.; El-sayed, H. M.; Shalaby, A. Response surface and tolerance analysis approach for optimizing HPLC method. Microchem. J. 2019, 146, 220–6. https://doi.org/10.1016/j.microc.2019.01.007.
  • 48. Riekkola, M. L.; Joensson, J. A.; Smith, R. M. Terminology for analytical capillary electromigration techniques (IUPAC Recommendations 2003). Pure Appl. Chem. 2004, 76(2), 443–51. https://doi.org/10.1351/pac200476020443.
  • 49. Terabe, S. Electrokinetic chromatography: an interface between electrophoresis and chromatography. Trends Anal. Chem. 1989, 8, 129–34. https://doi.org/10.1016/0165-9936(89)85022-8.
  • 50. El-Awady, M.; Belal, F.; Pyell, U. Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping—cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. A. 2013, 1309, 64–75. https://doi.org/10.1016/j.chroma.2013.08.020.
  • 51. Belal, F.; El-Din, M. S.; Tolba, M.; El-Awady, M.; Elmansi, H. Analysis of four antimigraine drugs in two ternary mixtures by sweeping-micellar electrokinetic chromatography with retention factor gradient effect and dynamic pH junction. Microchem. J. 2016, 127, 11–21. https://doi.org/10.1016/j.microc.2016.01.009.
  • 52. Belal, F.; El-Razeq, S. A.; Fouad, M.; Zayed, S.; Fouad, F. Simultaneous determination of five coccidiostats in veterinary powders, feed premixes, and baby food by micellar electrokinetic chromatography: application to chicken tissues and liver. Food Anal. Methods 2018, 11(12), 3531–41. https://doi.org/10.1007/s12161-018-1330-y.
  • 53. Armenta, S.; Garrigues, S.; de la Guardia, M. Green analytical chemistry. TrAC - Trends Anal. Chem. J. 2008, 27(6), 497–511. https://doi.org/10.1016/j.trac.2008.05.003.
  • 54. Płotka-Wasylka, J. J. T. A new tool for the evaluation of the analytical procedure: green Analytical Procedure Index. Talanta 2018, 181, 204–9. https://doi.org/10.1016/j.talanta.2018.01.013.
  • 55. CIPLOX-OZ tablets (ciprofloxacin þ ornidazole). https://ciplamed.com/content/ciplox-oz-tablets,2019 (Accessed July 2019).
  • 56. Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; et al. DrugBank 5.0: a major update to the DrugBank database for 2018. J.Nucleic Acids Res. 2018, 46(D1), D1074–82. https://doi.org/10.1093/nar/gkx1037.
  • 57. Goyon, A.; Francois, Y. N.; Colas, O.; Beck, A.; Veuthey, J. L.; Guillarme, D. High‐resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis 2018, 39(16), 2083–90. https://doi.org/10.1002/elps.201800131.
  • 58. Issaq, H. J.; Atamna, I. Z.; Muschik, G. M.; Janini, G. M. The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis. Chromatographia 1991, 32(3), 155–61. https://doi.org/10.1007/BF02325019.
  • 59. Williams, S. J.; Goodall, D. M.; Evans, K. P. Analysis of anthraquinone sulphonates: comparison of capillary electrophoresis with high-performance liquid chromatography. J. Chromatogr. A. 1993, 629(2), 379–84. https://doi.org/10.1016/0021-9673(93)87052-N.
  • 60. Waetzig, H.; Degenhardt, M.; Kunkel, A. Strategies for capillary electrophoresis. Method development and validation for pharmaceutical and biological applications. Electrophoresis 1998, 19, 2695–752. https://doi.org/10.1002/elps.1150191603.
  • 61. Altria, K.; Fabre, H. Approaches to optimisation of precision in capillary electrophoresis. J. Chromatographia 1995, 40(5–6), 313–20.
  • 62. ICH Technical Requirements for the Registration of Pharmaceutical for Human Use, Validation of Analytical Procedures: Text and Methodology Q2(R1), IFPMA, Geneva, Switzerland, November, 2005; pp 1–13.
  • 63. Miller, J. N.; Miller, J. C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education Limited: Harlow, England, 2005.
  • 64. The United States Pharmacopoeia 34, the National Formulary 29, the US Pharmacopoeial Convention: Rockville, MD, USA, 2011.
  • 65. Krishnaiah, Y. S. R.; Bhaskar, Y. M. P.; Shyale, S. Development and validation of a reversed-phase HPLC method for the analysis of ornidazole in pharmaceutical dosage forms. Asian J. Chem. 2003, 15(2), 925–9.
  • 66. Rani, N. U.; Rao, J. V. L. N. S. Etimation of tinidazole in tablets by RP–HPLC method. Int. J. Chem. Sci. 2010, 8(4), 2325–30.
  • 67. Oltean, E. G.; Nica, A. Development and validation of A RP-HPLC method for the quantization studies of metronidazole in tablets and powders dosage forms. Vet.Drug 2011, 5, 71–3.
  • 68. Płotka-Wasylka, J.; Namiesnik, J. Green Analytical Chemistry: Past, Present and Perspectives, Green Chemistry and Sustainable Technology; Springer: Berlin, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58ad4d2a-1afc-4cef-9175-e1075cfc8d02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.