PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation activities and application of ionizing radiation on cultural heritage at ENEA Calliope gamma facility (Casaccia R.C., Rome, Italy)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Applications of Radiation Science and Technology (ICARST-2017) (24-28 April 2017 ; Vienna, Austria)
Języki publikacji
EN
Abstrakty
EN
Since the 1980s, research and qualification activities are being carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome, Italy). The Calliope facility is deeply involved in radiation processing research and on the evaluation and characterization of the effects induced by gamma radiation on materials for different applications (crystals, glasses, optical fibres, polymers and biological systems) and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and high energy physics experiments. All the activities are carried out in the framework of international projects and collaboration with industries and research institutions. In the present work, particular attention will be paid to the cultural heritage activities performed at the Calliope facility, focused on two different aspects: (a) conservation and preservation by bio-deteriogen eradication in archived materials, and (b) consolidation and protection by degraded wooden and stone porous artefacts consolidation.
Czasopismo
Rocznik
Strony
261--267
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • ENEA FSN, Casaccia R.C., Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy, Tel.: +39 06 3048 3169, Fax: +39 06 3048 4875
autor
  • ENEA FSN, Casaccia R.C., Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy, Tel.: +39 06 3048 3169, Fax: +39 06 3048 4875
Bibliografia
  • 1. Baccaro, S., Cemmi, A., Ferrara, G., & Fiore, S. (2015). Calliope gamma irradiation facility at ENEA – Casaccia R.C. (Rome). Rome, Italy: ENEA. (RT/2015/13/ENEA).
  • 2. Baccaro, S., & Cemmi, A. (2011). Radiation damage studies performed at the Calliope gamma irradiation plant at ENEA (Italy). Proceedings of SPIE, 8144,17 pp. DOI: 10.1117/12.913879.
  • 3. Baccaro, S., & Cemmi, A. (2016). Optical characterization of ion-doped crystalline and glassy matrices operating under hostile environmental conditions. J. Phys.-Conf. Series, 763, 012001. DOI: 10.1088/1742- 6596/763/1/012001.
  • 4. Mihokova, E., Nikl, M., Pejchal, J., Baccaro, S., Cecilia, A., Nejezchleb, K., & Vedda, A. (2007). Luminescence and scintillation properties of Y3Al5O12:Pr single crystal. Phys. Status Solidi C, 4(3), 1012–1015. DOI: 10.1002/pssc.200673710.
  • 5. Angelucci, M., Atanova, O., Baccaro, S., Cemmi, A., Cordelli, M., Donghia, R., Giovannella, S., Happacher, F., Miscetti, S., Sarra, I., & Soleti, S. R. (2016). Longitudinal uniformity, time performances and irradiation test of pure CsI crystals. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 824, 678–680. http://dx.doi.org/10.1016/j.nima.2015.11.042.
  • 6. Baccaro, S. (1996). Radiation-induced effects in ethylene-propylene copolymer with antioxidant. In R. L. Clough & S. W. Shalaby (Eds.), Irradiation of polymers. Fundamental and technological applications (Chapter 25, pp. 323–339). ACS Symp. Series, Vol. 620. DOI: 10.1021/bk-1995-0619.
  • 7. Nikl, M., Bohácek, P., Mihóková, E., Rosa, J., Martini, M., Vedda, A., Fabeni, P., Pazzi, G. P., Laguta, V., Kobayashi, M., Ishii, M., Usuki, Y., Zimmermann, D., Baccaro, S., & Cecilia, A. (2001). The doping of PbWO4 in shaping its scintillator characteristics. Radiat. Meas., 33(5), 705–708. DOI: 10.1016/S1350-4487(01)00087-7.
  • 8. Nikl, M., Bohacek, P., Nitsch, K., Mihokova, E., Martini, M., Vedda, A., Croci, S., Pazzi, G. P., Fabeni, P., Baccaro, S., Borgia, B., Dafi bei, I., Diemoz, M., Organtini, G., Auffray, E., Lecoq, P., Kobayashi, M., Ishii, M., & Usuki, Y. (1997). Decay kinetics and thermoluminescence of PbWO4: La3+. Appl. Phys. Lett., 71(26), 3755–3757. http://doi.org/10.1063/1.120409.
  • 9. Baccaro, S., Bohacek, P., Borgia, B., Cecilia, A., Dafinei, I., Diemoz, M., Ishii, M., Jarolimek, O., Kobayashi, M., Martini, M., Montecchi, M., Nikl, M., Nitsch, K., Usuki, Y., & Vedda, A. (1997). Influence of La3+-doping on radiation hardness and thermoluminescence characteristics of PbWO4. Phys. Status Solidi A, 160(2), R5–R6. DOI: 10.1002/1521-396X(199704)160:2.
  • 10. Nikl, M., Nitsch, K., Baccaro, S., Cecilia, A., Montecchi, M., Borgia, B., Dafinei, I., Diemoz, M., Martini, M., Rosetta, E., Spinolo, G., Vedda, A., Kobayashi, M., Ishii, M., Usuki, Y., Jarolimek, O., & Reiche, P. (1997). Radiation induced formation of color centers in PbWO4 single crystals. J. Appl. Phys., 82(11), 5758–5762.
  • 11. Baccaro, S. (1999). Recent progress in the development of lead tungstate crystals. IEEE Trans. Nucl. Sci., 46(3, Pt.1), 292–295. DOI: 10.1109/23.775531.
  • 12. Baccaro, S., Boháček, P., Cecilia, A., Cemmi, A., Croci, S., Dafinei, I., Diemoz, M., Fabeni, P., Ishii,
  • M., Kobayashi, M., Martini, M., Mihoková, E., Montecchi, M., Nikl, M., Organtini, G., Pazzi, G. P., Usuki, Y., & Vedda, A. (2000). Influence of Gd3+concentration on PbWO4:Gd3+ scintillation characteristics. Phys. Status Solidi A, 179(2), 445–454.DOI: 10.1002/1521-396X(200006)179:2<445::AIDPSSA445>3.0.CO;2-H.
  • 13. Aloisio, A., Baccaro, S., Bernieri, E., Branchini, P.,Budano, A., Budano, F., Cecchi, C., Cemmi, A., Corradi, G., De Lucia, E., De Nardo, G., de Sangro, R., Finocchiaro, G., Fiore, S., Giordano, R., Manoni, E., Merola, M., Montecchi, M., Oberhof, B., Passeri, A., Peruzzi, I., Piccolo, M., Rossi, A., Sciacca, S., & Tagnani, D. (2016). A pure CsI calorimeter for the Belle II experiment at SuperKEKB. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 824, 704–709. https://doi.org/10.1016/j.nima.2015.11.045.
  • 14. Baccaro, S., Cecilia, A., Di Sarcina, I., & Piegari, A. (2005). Effect of gamma irradiation on optical components. IEEE Trans. Nucl. Sci., 52(5), 1779. DOI: 10.1109/TNS.2005.856822.
  • 15. Baccaro, S., Cemmi, A., Di Sarcina, I., & Menchini, F. (2015). Gamma rays effects on the optical properties of cerium-doped glasses. Int. J. Appl. Glass Sci., 6(3), 295–301. DOI: 10.1111/ijag.12131.
  • 16. Baccaro, S., Carewska, M., Casieri, C., Cemmi, A., & Lepore, A. (2013). Structure modifications and interaction with moisture in γ-irradiated pure cellulose by thermal analysis and infrared spectroscopy. Polym. Degrad. Stabil., 98(10), 2005–2010. DOI: 10.1016/j.polymdegradstab.2013.07.011.
  • 17. Lepore, A., Baccaro, S., Casieri, C., Cemmi, A., & De Luca, F. (2012). Role of water in the ageing mechanism of paper. Chem. Phys. Lett., 531, 206–209. DOI:10.1016/j.cplett.2012.01.083.
  • 18. Baccaro, S., Buontempo, U., & D’Atanasio, P. (1993). Radiation induced degradation of EPR by IR oxidation profi ling. Radiat. Phys. Chem., 42(1/3), 211–214.DOI: 10.1016/0969-806X(93)90236-N.
  • 19. Baccaro, S., Buontempo, U., Caccia, B., Onori, S., & Pantaloni, M. (1993). ESR study of irradiated ethylene-propylene rubber. Appl. Radiat. Isot., 44(1/2), 331–335. DOI: 10.1016/0969-8043(93)90242-3.
  • 20. Bourtoom, T. (2009). Edible protein films: properties enhancement. Int. Food Res. J., 16, 1–9.
  • 21. Baccaro, S., Bateman, J. E., Cavallari, F., Da Ponte, V., Deiters, K., Denes, P., Diemoz, M., Kirn, Th., Lintern, A. L., Longo, E., Montecchi, M., Musienko, Y., Pansart, J. P., Renker, D., Reucroft, S., Rosi, G., Rusack, R., Ruuska, D., Stephenson, R., & Torbet, M. J. (1999). Radiation damage effect on avalanche photodiodes. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 426(1), 206–211. DOI: 10.1016/S0168-9002(98)01493-4.
  • 22. European Space Agency. (2010, October). Total dose steady-state irradiation test method. ESA/SCC Basic Specification No. 22900. ESA. Available from https://escies.org/download/webDocumentFile?id=59310.
  • 23. Department of Defence USA. (May 1, 1997). Ionizing radiation (total dose) test procedure. In Test method standard microcircuits. MIL-STD-883E, method 1019.4. Available from http://scipp.ucsc.edu/groups/fermi/electronics/mil-std-883.pdf.
  • 24. Rossi, P., Ferri deCollibus, M., Florean, M., Monti, C., Mugnaini, G., Neri, C., Pillon, M., Pollastrone, F., Baccaro, S., Piegari, A., Damiani, C., & Dubus, G. (2013). IVVS actuating system compatibility test to ITER gamma radiation conditions. Fusion Eng. Des., 88(9/10), 2084–2087. DOI: 10.1016/j.fusengdes.2013.03.030.
  • 25. Attix, F. H., & Roesch, W. (Eds). (1968). Radiation dosimeter. Vol. 1. New York: Academic Press.
  • 26. International Atomic Energy Agency. (2009). Nuclear techniques for preservation of cultural heritage artefacts. Vienna: IAEA. (TECP-RER 8/015).
  • 27. International Atomic Energy Agency. (2011). Nuclear techniques for cultural heritage research. Vienna: IAEA. (Radiation Technology Series no. 2).
  • 28. Adamo, M., Baccaro, S., & Cemmi, A. (2015). Radiation processing for bio-deteriorated archived materials and for consolidation of porous artefacts. Rome: ENEA. (Report RT/2015/5/ENEA).
  • 29. Głuszewski, W., Zagórski, Z. P., Tran, Q. K., & Cortella, L. (2011). Maria Skłodowska Curie – the precursor of radiation sterilization methods. Anal. Bioanal. Chem., 400, 1577–1582. DOI: 10.1007/s00216-011-4699-7.
  • 30. Hunt, D. (2012). Properties of wood in the conservation of historical wooden artefacts. J. Cult. Herit., 13, 10–15. http://doi.org/10.1016/j.culher.2012.03.014.
  • 31. Charlesby, A. (1960). Atomic radiation and polymers. Oxford: Pergamon Press.
  • 32. Dole, M. (1972–1973). The radiation chemistry of macromolecules. Vols. 1, 2. New York: Academic Press.
  • 33. Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa,D. (2015). The use of DRS and GC to study the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. doi: 10.1515/nuka-2015-0090.
  • 34. Adamo, M., Giovannotti, M., Magaudda, G., Plossi Zappala, M., Rocchetti, F., & Rossi, G. (1998). Effect of gamma rays on pure cellolose paper as a model for the study of a treatment of biological recovery of biodeteriorated books. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 19, 41–59. https://doi.org/10.1515/ rest.1998.19.1.41.
  • 35. Nunes, I., Mesquita, N., Cabo Verde, S., Carolino, M. M., Portugal, A., & Botelho, M. L. (2013). Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiat. Phys. Chem., 88, 82–89. http://dx.doi.org/10.1016/j.radphyschem.2013.03.031.
  • 36. Bertrand, L., Schöeder, S., Anglos, D., Breeze, M. B. H., Janssens, K., Moini, M., & Simon, A. (2015). Mitigation strategies for radiation damage in the analysis of ancient materials. TRAC-Trends Anal. Chem., 66, 128–145. http://doi.org/10.1016/j.trac.2014.10.005.
  • 37. Adamo, M., Brizzi, M., Magaudda, G., Martinelli, G., Plossi-Zappalà, M., Rocchetti, F., & Savagnone, F. (2001). Gamma radiation of paper in different environmental conditions: chemical, physical and microbiological analysis. Restaur.-Int. J. Preserv. Libr. Arch. Mater., 22(2), 107–131. DOI: 10.1515/REST.2001.107.
  • 38. Rocchetti, F., Adamo, M., & Magaudda, G. (2002).Fastness of printing inks subjected to gamma ray irradiation.Restaur.-Int. J. Preserv. Libr. Arch. Mater.,23(1), 15–26. DOI: 10.1515/REST.2002.15.
  • 39. Adamo, M., & Magaudda, G. (2003). Susceptibilityof printed paper to attack of chewing insects after gamma radiation and aging. Restaur.-Int. J. Preserv.Libr. Arch. Mater., 24(2), 95–105. DOI: 10.1515/REST.2003.95.
  • 40. Adamo, M., Magaudda, G., Trionfetti Nisini, P., &Tronelli, G. (2003). Susceptibility of cellulose to attack of cellulolytic microfungi after -rays irradiation and ageing. Restaur.-Int. J. Preserv. Libr. Arch. Mater.,24(3), 145–151. DOI: 10.1515/REST.2003.145.
  • 41. Magaudda, G. (2004). The recovery of biodeteriorated books and archive documents through gamma radiation:some considerations on the results achieved.J. Cult. Herit., 5, 113–118. DOI: 10.1016/j.culher.2003.07.003.
  • 42. International Organization for Standardization.(2006). Sterilization of health care products – Radiation– Part 2: Establishing the sterilization dose. ISO11137-2. Geneva.
  • 43. Bouchard, J., Méthot, M., & Jordan, B. (2006). The effects of ionizing radiation on the cellulose of woodfree , paper. Cellulose, 13, 601–610. DOI: 10.1007/s10570-005-9033-0.
  • 44. Baccaro, S., Casieri, C., Cemmi, A., Chiarini, M.,D’Aiuto, V., & Tortora, M. (2015). Gamma radiation induced in-situ polymerization of consolidating products for the conservation of cultural heritage manufacts. In 4th International Symposium Frontiers in Polymer Science, 20–22 May 2015, Riva del Garda, Italy.
  • 45. Baccaro, S., Casieri, C., Cemmi, A., Chiarini, M., D’Aiuto, V. , & Tortora, M. (2017). Characterization of γ-radiation induced polymerization in ethyl methacrylate and methyl acrylate monomers solutions. Radiat. Phys. Chem., 141, 131–137. https://doi. org/10.1016/j.radphyschem.2017.06.017.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58acfc1e-ae32-447f-abb2-28f3fdf08fb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.