PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of heat transfer in Al2O3/H2O nanofluid flowing through a Bessel-like converging pipe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies hydrodynamic and heat transfer performance of Al2O3/H2O nanofluid flowing through a Bessel-like converging pipe in laminar flow regime using the computational fluid dynamic approach. A parametric study was carried out on the effect of Reynolds number (300– 1200), convergence index (0-3) and nanoparticle concentration (0–3%) on the both hydrodynamic and thermal fields. The results showed the pressure drop profile along the axial length of the converging pipes is parabolic compared to the downward straight profile obtained in a straight pipe. Furthermore, an increase in convergence index, Reynolds number and nanoparticle concentration were found to enhance convective heat transfer performance. Also, a new empirical model was developed to estimates the average Nusselt number as a function of aforementioned variables. Finally, the result of the thermohydraulic performance evaluation criterion showed that the usage of Bessel-like converging pipes is advantageous at a low Reynolds number.
Rocznik
Strony
121--153
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Mechanical Engineering, Delta State Polytechnic, Ozoro, P.M.B 5, Ozoro 334111, Delta State, Nigeria
  • Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife 220282, Osun State, Nigeria
Bibliografia
  • [1] Kaood A., Abou-Deif T., Eltahan H., Yehia M.A., Khalil E.E.: Numerical investigation of heat transfer and friction characteristics for turbulent flow in various corrugated tubes. Mech. Eng. A.-J. Pow. 233(2019), 4, 457–475.
  • [2] Kaood A., Hassan M.A.: Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes. Chem. Eng. Proces. – Process Intensif. 154(2020),108043.
  • [3] Owojori A.A., Olokuntoye B.A., Fadodun O.G.: Numerical investigation of second law analysis of PGGNP/H2O nanofluid in various converging pipes. Int. Nano Lett., 11(2021), 43–57.
  • [4] Khodabandeh E., Rozati S.A., Joshaghani M., Akbari O.A., Akbari S., Toghraie D.: Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J. Therm. Anal. Calorim. 136(2019), 3, 1333–1345.
  • [5] Fadodun O.G., Amosun A.A., Salau A.O., Ogundeji J.A.: Numerical investigation of thermal performance of singlewalled carbon nanotube nanofluid under turbulent flow conditions. Eng. Rep. 1(2019), 1–19, e12024.
  • [6] Sarkar M., Paramane S.B., Sharma A.: Periodically fully developed heat and fluid flow characteristics in a furrowed wavy channel. Heat Transfer Eng. 38(2017), 2, 278–288.
  • [7] Fadodun O.G, Amosun A.A, Okoli N.L., Olaloye D.A, Ogundeji J.A., Durodola S.S.: Numerical investigation of entropy production in SWCNT/H2O nanofluid flowing through inwardly corrugated tube in turbulent flow regime. J. Therm. Anal. Calorim. 144(2021), 4, 1451–1466.
  • [8] Al-Sammarraie A.T., Vafai K.: Heat transfer augmentation through convergence angles in a pipe. Numer. Heat Tr. A-Appl. 72(2017), 3, 197–214.
  • [9] Al-Sammarraie A.T., Al-Jethelah M., Salimpour M.R., Vafai K.: Nanofluids transport through a novel concave/convex convergent pipe. Numer. Heat Tr. A-Appl. 75(2019), 2, 91–109.
  • [10] Davood T., Omid A.A, Ali K., Ramin M.: Numerical investigation of turbulent nanofluid flow and two-dimensional forced-convection heat transfer in a sinusoidal converging-diverging channel. Heat Transf. Res. 50(2019), 7, 671–695.
  • [11] Xie Y., Zheng L., Zhang D., Xie G.: Entropy generation and heat transfer performances of Al2O3-water nanofluid transitional flow in rectangular channels with dimples and protrusions. Entropy 18(2016), 4, 148–160.
  • [12] Anvari A., Javaherdeh K., Emami-Meibodi M.: Performance evaluation of a new Nano fluid through micro channels heat exchanger. Chem. Engineer Trans. 71(2018), 973–978.
  • [13] Salman S.D.: Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation. Heat Transf. – Asian Res 48(2019), 1, 148–163.
  • [14] Huminic G., Huminic A.: A numerical approach on hybrid nanofluid behavior in laminar duct flow with various cross sections. J. Therm. Anal. Calorim., 144(2020), 5, 2097–2110.
  • [15] Pourfattah F.: The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J. Mol. Liq. 236(2017), 254–265.
  • [16] Khoshvaght-Aliabadi M.: Influence of different design parameters and Al2O3– water nanofluid flow on heat transfer and flow characteristics of sinusoidalcorrugated channels. Energ. Convers. Manage. 88(2014), 96–105.
  • [17] Rashidi A.T., Akbarzadeh M., Karimi N., Masoodi R.: Combined effects of nanofluid and transverse twisted-baffles on the flow structures heat transfer and irreversibilities inside a square duct. J. Appl. Therm. Eng. 5(2018), 7, 651–675.
  • [18] Manca O., Nardini S., Ricci D., Tamburrino S.: Numerical investigation on mixed convection in triangular cross-section ducts with nanofluids. Adv. Mech. Eng. 4(2012), 1, 1–13.
  • [19] Ahmed M.A., Yusoff M.Z., Shuaib N.H., Ng K.C.: A numerical study of laminar forced convection flow of Al2O3–water nanofluid in triangular-corrugated channel. IOP C. Ser. Earth Env. 16(2013), 1, 2149–2153.
  • [20] Aydar A.Y.: Utilization of response surface methodology in optimization of extraction of plant materials. In: Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes (V. Silva, Ed.). InTech, 2018, Chapt. 10, 157–169.
  • [21] Fadodun O.G, Salau A.O, Amosun A.A, Ibitoye F.I.: Sensitivity analysis and evaluation of critical size of reactor using response surface methdodlogy. Int. J. Emerg. Technol. 10(2019), 4 184–190.
  • [22] Fadodun O.G, Amosun A.A; Salau A.O, Olaloye D.O, Ogundeji J.O, Ibitoye F.I, Balogun F.A.: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 1, 3–30.
  • [23] Fadodun O.G, Olokuntoye B.A; Salau A.O, Amosun A.A.: Numerical investigation and sensitivity analysis of entropy production in Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 2, 119–146.
  • [24] Shirvan K. M., Mamourian M., Mirzakhanlari S., Ellahi R.: Two-phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J. Mol. Liq. 220(2016), 888–901.
  • [25] Fadodun O.G, Amosun A.A., Okoli N. L. Olaloye D.O, Solomon S.D and Ogundeji J.A.: Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J. Therm. Anal. Calorim. 143(2021), 1, 431–444.
  • [26] Chan J.S., Ghadimi A., Simon H., Metselaar, C., Lotfizadehdehkordi B.: Optimization of temperature and velocity on heat transfer enhancement of nonaqueous alumina nanofluid. J. Eng. Sci. Technol. 10(2015) 85–101.
  • [27] Nookaraju B.C., Kurmarao P.S.V., Nagasarada S., Karthikeyan R., Vinay A.: Optimization of process parameters of helical grooved heat pipe using response surface methodology. Mater. Today: Proc. 5(2018), 2, 5262–5271.
  • [28] Saha G., Paul M.C.: Heat transfer and entropy generation of turbulent forced convection flow of nanofluids in a heated pipe. Int. Commun. Heat Mass 61(2015), 26–36.
  • [29] Kays W.M., Crawford M.E.: Convection Heat and Mass Transfer (2nd Edn.). McGraw Hill, New York 1980.
  • [30] Buongiorno J.: Convective transport in nanofluids. J. Heat Transf. 128(2006), 3, 240–250.
  • [31] Xuan Y., Roetzel W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Trans. 43(2000), 19, 3701–3707.
  • [32] Corcione M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energ. Convers. Manage. 52(2011), 1, 789–793.
  • [33] Bird R.B., Stewart W.E., Lightfoot, E.N.: Transport Phenomena (2nd Edn.). Wiley, 2007.
  • [34] Churchill S.W.: Friction factor equation spans all fluid-flow regime. Chem. Eng. J. 84(1997), 24, 91–92.
  • [35] Shah R. K., London A. L.: Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Academic Press, 2014.
  • [36] Kourkah F.F., Mahd D.K., Mirzaee M.: Optimization of double pipe heat exchanger with response surface methodology using nanofluid and twisted tape. Fluid Mech. 3(2017), 3, 20–26.
  • [37] Design-Expert 8.0.7, Stat-Ease Inc., Minneapolis 2012.
  • [38] Andreozzi A., Manca O., Nardini S., Ricci D.: Forced convection enhancement in channels with transversal ribs and nanofluids. Appl. Therm. Eng. 98(2016), 1, 1044–1053.
  • [39] Nadila N.I., Lazim T.M., Mat S.: Verification of heat transfer enhancement in tube with spiral corrugation. AIP Conf. Proc. 2062(2019), 1, 020032-1-6.
  • [40] Fluent 14.0 Theory Guide, Fluent Inc., Pittsburgh 2012.
  • [41] Wen D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Tran. 47(2004), 24, 5181–5188.
  • [42] Heris S.Z., Etemad S.G., Esfahany M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass 33(2006), 4, 529–535
  • [43] Mwesigye A., Meyer J.P.: Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energ. 193(2017), 393–413
  • [44] Vigdorovich I.: Turbulent thermal boundary layer on a plate. Reynolds analogy and heat transfer law over the entire range of Prandtl numbers. Fluid Dyn. 52(2017), 1, 631–645.
  • [45] Carley K.M., Kamneva N.Y., Reminga J.: Response surface methodology. CASOS Techn. Rep. CMU-ISRI-04-136. Carnegie-Mellon Univ., School of Computer Science, Pittsburgh 2004.
  • [46] Richard B.: Design Expert 7. Introduction. Loughborough Univ. Mathematics Learning Support Centre. Loughborough 2007.
  • [47] Khuri A.I., Mukhopadhyay S.: Response surface methodology. WIREs Comp. Stat. 2(2010), 2, 128–149.
  • [48] Griewank A., Walther A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2nd Edn.). SIAM, Philadelphia 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58a9b9a5-3f2a-472d-b767-28cb54af76e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.