Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zmniejszenie prawdopodobieństwa występowania awarii urządzeń produkcyjnych dzięki ilościowej analizie FTA
Języki publikacji
Abstrakty
Fault Tree Analysis (FTA) is a method that directly focuses on the modes of failures. The FTA is a graphical representation of the major faults or critical failures associated with a product, as well as the causes for the faults and potential countermeasures. The aim of this research paper is to calculate the probability of the top event - the failure of the process using FTA and propose a technique to prioritize factors for action design and reduce the likelihood of a top event failure based on manufacturers' requirements. We have constructed a qualitative fault tree to produce office components packed and sealed in blister packs using a KOCH KBS-PL machine. We defined the top event G – the production of office components, packed and sealed in blister packs on the machinery KOCH KBS-PL. Then we defined events leading to top events down to individual failure factors. Based on the links between the fault tree and the probability of failure, we performed a quantitative analysis to determine the probability of failure of individual events. We found out that the probability of failure of G is 5.04%. Subsequently, we identified which factors most significantly reduce the resulting probability of failure of factor G. These are the factors: E - feed rate, F - cooling, AL - incorrect setting and D - break. It has been proven that by controlling these 4 factors, we can reduce the probability of failure of top event G to 2.36%, provided that effective measures are taken. The final proposal meets the requirements of several manufacturers for a fast, efficient, and cost-effective solution. We have created a proposal that saves time, has minimal software and hardware requirements, and is easy to use. The efficiency and effectiveness of the proposal was that we identified the weakest points in the fault tree that most significantly cause the top event to fail. This prioritized the factors for the design of the measures.
Analiza Drzewa Usterek (Fault Tree Analysis, FTA) to metoda opracowana z myślą o rozwiązywaniu usterek maszyn produkcyjnych. Umożliwia ona graficzne przedstawienie głównych usterek lub krytycznych awarii oraz ich przyczyn, a także potencjalnych środków zaradczych. Celem artykułu jest obliczenie prawdopodobieństwa wystąpienia głównego zdarzenia - awarii procesu - za pomocą FTA oraz zaproponowanie techniki priorytetyzacji czynników w projektowaniu działań naprawczych i zmniejszenia prawdopodobieństwa awarii głównego zdarzenia bazując na specyfikacji producenta. W toku badań skonstruowaliśmy jakościowe drzewo usterek do produkcji komponentów biurowych pakowanych i zabezpieczanych w opakowaniach blisterowych na maszynie KOCH KBSPL. Zdefiniowaliśmy główne zdarzenie G - produkcję komponentów biurowych. Następnie zdefiniowaliśmy zdarzenia prowadzące od głównych zdarzeń aż do indywidualnych czynników awarii. Na podstawie powiązań między drzewem usterek a prawdopodobieństwem awarii przeprowadziliśmy analizę ilościową, by określić prawdopodobieństwo awarii poszczególnych zdarzeń. Okazało się, że prawdopodobieństwo awarii G wynosi 5,04%. Następnie ustaliliśmy, które czynniki najbardziej przyczyniają się do zmniejszenia wynikowego prawdopodobieństwa awarii czynnika G. Są to: E - prędkość podawania, F - chłodzenie, AL - nieprawidłowe ustawienie i D - przerwa. Udowodniliśmy, że kontrolując te cztery czynniki możemy zmniejszyć prawdopodobieństwo awarii głównego zdarzenia G do 2,36%, pod warunkiem, że zostaną podjęte skuteczne działania. Ostateczna propozycja spełnia wymagania wielu producentów, którzy oczekują szybkiego, wydajnego i niedrogiego rozwiązania. Stworzyliśmy propozycję, która oszczędza czas, ma minimalne wymagania sprzętowe i programowe oraz jest łatwa w użyciu. Efektywność i skuteczność proponowanego rozwiązania polegała na tym, że zidentyfikowaliśmy najsłabsze punkty w drzewie usterek, które w największym stopniu powodują awarię głównego zdarzenia. To pozwoliło priorytetyzować czynniki do projektowania środków zaradczych.
Czasopismo
Rocznik
Tom
Strony
255--271
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Institute of Design and Engineering Technologies, Slovak University of Agriculture in Nitra, Slovakia
autor
- Institute of Design and Engineering Technologies, Slovak University of Agriculture in Nitra, Slovakia
autor
- Faculty of Industrial Management, Universiti Teknologi Malaysia
autor
- International University of Applied Sciences in Lomza, Poland
autor
- Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
autor
- Department of Transport, Faculty of Transport, “Angel Kanchev” University of Ruse, Bulgaria
autor
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow
Bibliografia
- Abdelgawad, M., & Fayek, A. R. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management, 136(9), 1028-1036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210.
- Aliee, H., & Zarandi, H. R. (2013). A fast and accurate fault tree analysis based on stochastic logic implemented on field-programmable gate arrays. IEEE Transactions on Reliability, 62(1), 13-22. https://doi.org/10.1109/TR.2012.2221012.
- Aven, T. (2011). On the new ISO guide on risk management terminology. Reliability Engineering & System Safety, 96(7), 719-726. https://doi.org/10.1016/J.RESS.2010.12.020.
- Baig, A. A., Ruzli, R., & Buang, A. B. (2013). Reliability Analysis Using Fault Tree Analysis: A Review. International Journal of Chemical Engineering and Applications, Vol. 4(3), 169-173. https://doi.org/10.7763/ijcea.2013.v4.287.
- Baraldi, P., Compare, M., Despujols, A., Rossetti, G., & Zio, E. (2010). An hybrid Monte Carlo and Fuzzy Logic Method for Maintenance Modelling. 38th ESReDA Seminar, 1-14. https://hal.archivesouvertes.fr/hal-00720980.
- Barozzi, M., Contini, S., Raboni, M., Torretta, V., Casson Moreno, V., & Copelli, S. (2021). Integration of Recursive Operability Analysis, FMECA and FTA for the Quantitative Risk Assessment in biogas plants: Role of procedural errors and components failures. Journal of Loss Prevention in the Process Industries, 71, 104468. https://doi.org/10.1016/J.JLP.2021.104468.
- Čepin, M., & Mavko, B. (2002). A dynamic fault tree. Reliability Engineering and System Safety, 75(1), 83-91. https://doi.org/10.1016/S0951-8320(01)00121-1.
- Chemweno, P., Pintelon, L., van Horenbeek, A., & Muchiri, P. (2015). Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach. International Journal of Production Economics, 170, 663-676. https://doi.org/10.1016/J.IJPE.2015.03.017.
- da Costa, M. A. B., Brandão, A. L. T., Santos, J. G. F., Pinto, J. C., & Nele, M. (2020). Quantitative FTA using Monte Carlo analyses in a pharmaceutical plant. European Journal of Pharmaceutical Sciences, 146, 105265. https://doi.org/10.1016/J.EJPS.2020.105265.
- Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3-24. https://doi.org/10.1016/J.FSS.2010.11.007.
- Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems. IEEE Transactions on Reliability, 41(3), 363-377. https://doi.org/10.1109/24.159800.
- Durga Rao, K., Gopika, V., Sanyasi Rao, V. V. S., Kushwaha, H. S., Verma, A. K., & Srividya, A. (2009). Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliability Engineering & System Safety, 94(4), 872–883. https://doi.org/ 10.1016/J.RESS.2008.09.007.
- Dziki, D. (2023). The Latest Innovations in Wheat Flour Milling: A Review. Agricultural Engineering, 27(1), 147-162. https://doi.org/10.2478/agriceng-2023-0011.
- Flage, R., Baraldi, P., Zio, E., & Aven, T. (2013). Probability and Possibility-Based Representations of Uncertainty in Fault Tree Analysis. Risk Analysis, 33(1), 121-133. https://doi.org/10.1111/J.1539-6924.2012.01873.X.
- Hu, G., Huang, P., Bai, Z., Wang, Q., & Qi, K. (2021). Comprehensively analysis the failure evolution and safety evaluation of automotive lithium-ion battery. ETransportation, 10, 100140. https://doi.org/10.1016/J.ETRAN.2021.100140.
- Kabir, S. (2017). An overview of fault tree analysis and its application in model based dependability analysis. In Expert Systems with Applications (Vol. 77, pp. 114-135). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2017.01.058.
- Kabir, S., Geok, T. K., Kumar, M., Yazdi, M., & Hossain, F. (2020). A Method for Temporal Fault Tree Analysis Using Intuitionistic Fuzzy Set and Expert Elicitation. IEEE Access, 8, 980-996. https://doi.org/10.1109/ACCESS.2019.2961953.
- Kang, J., Sun, L., & Guedes Soares, C. (2019). Fault Tree Analysis of floating offshore wind turbines. Renewable Energy, 133, 1455-1467. https://doi.org/10.1016/j.renene.2018.08.097.
- Kovalenko, N., Hutsol, T., Kovalenko, V., Glowacki, S., Kokovikhin, S., Dubik, V., Mudragel, O., Kuboń, M. & Tomaszewska-Górecka, W. (2021). Hydrogen Production Analysis: Prospects for Ukraine. Agricultural Engineering, 25(1). 99-114. https://doi.org/10.2478/agriceng-2021-0008.
- Luo, W., Wei, O., & Wan, H. (2021). SATMCS: An Efficient SAT-Based Algorithm and Its Improvements for Computing Minimal Cut Sets. IEEE Transactions on Reliability, 70(2), 575-589. https://doi.org/10.1109/TR.2020.3014012.
- Markulik, S., Šolc, M., Petrík, J., Balážiková, M., Blaško, P., Kliment, J., & Bezák, M. (2021a). Application of fta analysis for calculation of the probability of the failure of the pressure leaching process. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11156731.
- Markulik, S., Šolc, M., Petrík, J., Balážiková, M., Blaško, P., Kliment, J., & Bezák, M. (2021b). Application of fta analysis for calculation of the probability of the failure of the pressure leaching process. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11156731.
- Miri Lavasani, M.R., Wang, J., Yang, Z., Finlay, J. (2011). Application of fuzzy fault tree analysis on oil and gas offshore pipelines (Vol. 1, Issue 1, pp. 29-42). International Journal of Marine Science and Engineering. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=244081.
- Nadjafi, M., Farsi, M. A., & Jabbari, H. (2016). Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate. International Journal of System Assurance Engineering and Management 2016, 8(3), 532-541. https://doi.org/10.1007/S13198-016-0563-7.
- Plura, J. (2012). Plánování jakosti II. Quality Planning II. Technical University of Ostrava.
- Postnikova, M., Mikhailov, E., Kvitka, S., Kurashkin, S., Kovalov, O., Klymenko, O., Semenov, A., Kucher, V. & Kowalczyk, Z. (2022). The Grain Cleaning Production Lines’ Energysaving Operation Modes of Electromechanical Systems. Agricultural Engineering, 26(1) 51-63. https://doi.org/10.2478/agriceng-2022-0005.
- Purba, J. H., Sony Tjahyani, D. T., Ekariansyah, A. S., & Tjahjono, H. (2015). Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty. Annals of Nuclear Energy, 85, 1189-1199. https://doi.org/10.1016/J.ANUCENE.2015.08.002.
- Rao, K. D., Rao, V. V. S. S., Verma, A. K., & Srividya, A. (2010). Dynamic Fault Tree Analysis: Simulation Approach. Springer Series in Reliability Engineering, 36, 41-64. https://doi.org/10.1007/978-1-84882-213-9_2.
- Ruijters, E., & Stoelinga, M. (2015a). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review, 15-16, 29-62. https://doi.org/10.1016/J.COSREV.2015.03.001.
- Ruijters, E., & Stoelinga, M. (2015b). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review (Vol. 15, pp. 29-62). Elsevier Ireland Ltd. https://doi.org/10.1016/j.cosrev.2015.03.001.
- Sallak, M., Simon, C., & Aubry, J. F. (2008). A fuzzy probabilistic approach for determining safety integrity level. IEEE Transactions on Fuzzy Systems, 16(1), 239-248. https://doi.org/ 10.1109/TFUZZ.2007.903328.
- Song, H., Zhang, H. Y., & Chan, C. W. (2008). Fuzzy fault tree analysis based on T-S model with application to INS/GPS navigation system. Soft Computing 2008, 13(1), 31-40. https://doi.org/10.1007/S00500-008-0290-3.
- Spalanzani, W., Ciptomulyono, U., Suef, M., Asmuddin, & Salwiah. (2020). Fault tree and decision making trial and evaluation laboratory model for formulating risk mitigation strategies at water production process of PDAM Baubau. AIP Conference Proceedings, 2217(1), 030111. https://doi.org/10.1063/5.0000750.
- Stamatelatos, M., Caraballo, M. J., Vesely, W., Dugan, J., Fragola, M. J., Minarick, M. J., Railsback, M. J., & Jsc, N. (2002). Fault Tree Handbook with Aerospace Applications Contributing Authors (listed in alphabetic order): Fault Tree Handbook with Aerospace Applications.
- Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-Tree Analysis by Fuzzy Probability. IEEE Transactions on Reliability, R-32(5). https://doi.org/10.1109/TR.1983.5221727.
- Tavakoli, M., & Nafar, M. (2021). Modification of the FFTA method for calculating and analyzing the human reliability of maintenance groups in power transmission grids. International Journal of Systems Assurance Engineering and Management. https://doi.org/10.1007/s13198-021-01141-8.
- Vesely, W. E., & Narum, R. E. (1970). PREP AND KITT: COMPUTER CODES FOR THE AUTOMATIC EVALUATION OF A FAULT TREE. https://doi.org/10.2172/4106635.
- Volkanovski, A., & Čepin, M. (2011). Implication of PSA uncertainties on risk-informed decision making. Nuclear Engineering and Design, 241(4), 1108-1113. https://doi.org/10.1016/J.NUCENGDES.2010.02.041.
- Xu, J., Yang, M., & Li, S. (2021). Hardware Reliability Analysis of a Coal Mine Gas Monitoring System Based on Fuzzy-FTA. Applied Sciences 2021, Vol. 11, Page 10616, 11(22), 10616. https://doi.org/10.3390/APP112210616.
- You, X., & Tonon, F. (2012). Event-Tree Analysis with Imprecise Probabilities. Risk Analysis, 32(2), 330-344. https://doi.org/10.1111/J.1539-6924.2011.01721.X.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/ 10.1016/S0019-9958(65)90241-X.
- Zhu, H. L., Liu, S. S., Qu, Y. Y., Han, X. X., He, W., & Cao, Y. (2021). A new risk assessment method based on belief rule base and fault tree analysis. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. https://doi.org/10.1177/1748006X211011457.
- Zio, E., & Pedroni, N. (2010). Reliability Estimation by Advanced Monte Carlo Simulation. Springer Series in Reliability Engineering, 36, 3-39. https://doi.org/10.1007/978-1-84882-213-9_1.
- Zonouz, S. A., & Miremadi, S. G. (2006). A Fuzzy-Monte Carlo simulation approach for fault tree analysis. Proceedings - Annual Reliability and Maintainability Symposium, 428-433. https://doi.org/10.1109/RAMS.2006.1677412.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58a46838-050e-44bb-9760-29713dad5127