PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Celiac Disease (CD) is a common ailment that affects approximately 1% of the world population. Automated CD detection can help experts during the diagnosis of this condition at an early stage and bring significant benefits to both patients and healthcare providers. For this purpose, scientists have created automatic and semi-automatic CD diagnostic support systems. In this study, we performed information extraction methods that were found useful for efforts to differentiate CD versus non-CD. To focus the review process, only methods for endoscopy, video capsule endoscopy (VCE) and biopsy image analyses were considered. As described herein, we have learned that statistical and non-linear methods are most important for information extraction. These information extraction tools might benefit clinical workflows by reducing intra- and inter-observer variability. However, bias, introduced by resolving design choices during the creation of diagnostic support systems, may limit the general validity of the performance results, impacting the transferability of study outcomes. Therefore, having am overview of information extraction tools. Together with their general and specific limitations, might be assistive in improving the information extraction process. We hope our review results will provide a foundation for the design of next-generation statistical and nonlinear methods that can be used in CD detection systems. We have also compared various review articles and discussed recommendations to improve CD diagnosis. From this review, it is evident that CD diagnosis is slowly moving away from conventional techniques towards advanced deep learning techniques.
Twórcy
autor
  • School of Engineering, Ngee Ann Polytechnic, Singapore
  • School of Engineering, Ngee Ann Polytechnic, Singapore
  • School of Science and Technology, Singapore University of Social Sciences, Singapore
  • Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
  • Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
autor
  • School of Engineering, Ngee Ann Polytechnic, Singapore
autor
  • School of Science and Technology, Singapore University of Social Sciences, Singapore
autor
  • Department of Computer Science, Anglia Ruskin University, Cambridge, United Kingdom
  • School of Management and Enterprise University of Southern Queensland Springfield, Australia
  • Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
  • Cogninet Brain Team, Cogninet Australia, Sydney, Australia
  • Department of Medicine – Celiac Disease Center, Columbia University Irving Medical Center, USA
  • School of Engineering, Ngee Ann Polytechnic, Singapore
  • School of Science and Technology, Singapore University of Social Sciences, Singapore
  • Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
  • International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
Bibliografia
  • [1] Green PHR, Cellier C. Celiac Disease. N Engl J Med 2007;357:1731-43. https://doi.org/10.1056/NEJMra071600.
  • [2] Husby S, Koletzko S, Korponay-Szabó I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J Pediatr Gastroenterol Nutr 2020;70:141-56. https://doi.org/10.1097/MPG.0000000000002497.
  • [3] Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2018;16:823-836.e2. https://doi.org/10.1016/j.cgh.2017.06.037.
  • [4] Mahadov S, Green PHR. Celiac disease: a challenge for all physicians. Gastroenterol Hepatol (N.Y) 2011;7:554-6. Available from: https://pubmed.ncbi.nlm.nih.gov/22298994.
  • [5] Catassi C, Gatti S, Lionetti E. World perspective and celiac disease epidemiology. Dig Dis 2015;33:141-6. https://doi.org/10.1159/000369518.
  • [6] Paul SP, Raja DI, Sandhu BK, Rao SR, Spray CH, Wiskin AE, Selvarajan L, Volonaki E, Ramani P, Tashtoush LB, Basude D. Evidence supporting safe diagnosis of coeliac disease in children with antitissue transglutaminase titre ≥5 times upper limit of normal. Arch Dis Child 2022. https://doi.org/10.1136/archdischild-2021-322000.
  • [7] Durazzo M, Ferro A, Brascugli I, Mattivi S, Fagoonee S, Pellicano R. Extra-Intestinal manifestations of celiac disease: what should we know in 2022? J Clin Med 2022;11:258. https://doi.org/10.3390/jcm11010258.
  • [8] Enache I, Balaban DV, Vasilescu F, Jurcut C, Ionita-Radu F, Popp A, et al. Upper gastrointestinal tract associated lesions in patients with newly diagnosed celiac disease. Gastroenterol Insights 2022;13:77-86. https://doi.org/10.3390/gastroent13010009.
  • [9] Kramer S, Masclee AAM, Jebbink RJA, Tack GJ. Commonly used biomarkers do not contribute to diagnosing irritable bowel syndrome. Eur J Gastroenterol Hepatol 2022;34:302-7. https://doi.org/10.1097/MEG.0000000000002312.
  • [10] Auricchio R, Mandile R, Del Vecchio MR, Scapaticci S, Galatola M, Maglio M, et al. Progression of Celiac Disease in Children With Antibodies Against Tissue Transglutaminase and Normal Duodenal Architecture. Gastroenterology 2019;157:413-420.e3. https://doi.org/10.1053/j.gastro.2019.04.004.
  • [11] Ferretti F, Branchi F, Orlando S, Roncoroni L, Barigelletti G, Fabiano S, et al. Effectiveness of Capsule Endoscopy and Double-Balloon Enteroscopy in Suspected Complicated Celiac Disease. Clin Gastroenterol Hepatol 2022;20:941-949. e3. https://doi.org/10.1016/j.cgh.2020.11.010.
  • [12] Elli L, Marinoni B, Baltes P, Beaumont H, Bojarski C, Branchi F, Bruno M, Buchkremer J, Cadoni S, Cavallaro F, Chetcuti Zammit S, Dray X, Eliakim R, Ellul P, Fernandez Urien I, Keuchel M, Khater S, Kopylov U, Koulaouzidis A, Leenhardt R, Marmo C, McNamara D, Mussetto A, Nemeth A, Cuadrado Robles EP, Perrod G, Rahmi G, Riccioni ME, Robertson A, Rondonotti E, Saurin JC, Sidhu R, Spada C, Toth E, Tontini GE, Triantafyllou K, Johansson GW, Rimondi A. Nomenclature and Semantic Description of Atrophic Lesions in Small Bowel Capsule Endoscopy: an International Delphi Consensus Statement. ESGE Days 2022 2022;54. https://doi.org/10.1055/s-0042-1744629.
  • [13] Gulati S, Emmanuel A, Ong M, Pavlidis P, Patel M, El-Menabawey T, et al. Near-focus narrow-band imaging classification of villous atrophy in suspected celiac disease: development and international validation. Gastrointest Endosc 2021;94:1071-81. https://doi.org/10.1016/j.gie.2021.06.031.
  • [14] Rondonotti E, Paggi S. Videocapsule endoscopy in celiac disease: Indications and timing. Dig Dis 2015;33:244-51. https://doi.org/10.1159/000369510.
  • [15] Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (’celiac sprue’). Gastroenterology 1992;102:330-54. https://doi.org/10.1016/0016-5085(92)91819-P.
  • [16] Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: Time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 1999;11:1185-94. https://doi.org/10.1097/00042737-199910000-00019.
  • [17] Marsh MN, Crowe PT. 5 Morphology of the mucosal lesion in gluten sensitivity. Baillieres Clin Gastroenterol 1995;9:273-93. https://doi.org/10.1016/0950-3528(95)90032-2.
  • [18] Arguelles-Grande C, Tennyson CA, Lewis SK, Green PHR, Bhagat G. Variability in small bowel histopathology reporting between different pathology practice settings: impact on the diagnosis of coeliac disease. J Clin Pathol 2011;65:242-7.
  • [19] Li BN, Wang X, Wang R, Zhou T, Gao R, Ciaccio EJ, et al. Celiac Disease Detection From Videocapsule Endoscopy Images Using Strip Principal Component Analysis. IEEE/ACM Trans Comput Biol Bioinforma 2021;18:1396-404. https://doi.org/10.1109/TCBB.2019.2953701.
  • [20] Maleki F, Cote K, Najafian K, Ovens K, Miao Y, Zakarian R, Reinhold C, Forghani R, Savadjiev P, Gao ZH, A Deep Learning-Based Pipeline For Celiac Disease Diagnosis Using Histopathological Images. In: Comput. Anal. Images Patterns 19th Int. Conf. CAIP 2021, Virtual Event, Sept. 28-30, 2021, Proceedings, Part I, Springer-Verlag, Berlin, Heidelberg, 2021: pp. 206-214. https://doi.org/10.1007/978-3-030-89128-2_20.
  • [21] Brocchi E, Tomassetti P, Misitano B, Epifanio G, Corinaldesi R, Bonvicini F, et al. Endoscopic markers in adult coeliac disease. Dig Liver Dis 2002;34:177-82. https://doi.org/10.1016/S1590-8658(02)80190-6.
  • [22] Edward PHG, Ciaccio J, Bhagat G, Lewis SK. Use of shapefrom-shading to characterize mucosal topography in celiac disease videocapsule images. World J Gastrointest Endosc 2017;9:296-345.
  • [23] Foerster F, Neumann H. Panintestinal capsule endoscopy in patients with celiac disease. Eur J Gastroenterol Hepatol 2021;33:e1022-6. https://doi.org/10.1097/MEG.0000000000002205.
  • [24] Zammit SC, Elli L, Scaramella L, Sanders DS, Tontini GE, Sidhu R. Small bowel capsule endoscopy in refractory celiac disease: A luxury or a necessity? Ann Gastroenterol 2021;34:188-95. https://doi.org/10.20524/aog.2021.0586.
  • [25] Ciaccio EJ, Lewis SK, Bhagat G, Green PH. Coeliac disease and the videocapsule: what have we learned till now. Ann Transl Med 2017;5:197. https://doi.org/10.21037/atm.2017.05.06.
  • [26] Luján-Sanchis M, Pérez-Cuadrado-Robles E, García-Lledó J, Fernández JFJ, Elli L, Jiménez-García VA, et al. Role of capsule endoscopy in suspected celiac disease: a European multicentre study. World J Gastroenterol 2017;23:703-11. https://doi.org/10.3748/wjg.v23.i4.703.
  • [27] Stoleru CA, Dulf EH, Ciobanu L. Automated detection of celiac disease using Machine Learning Algorithms. Sci Rep 2022;12:1-20. https://doi.org/10.1038/s41598-022-07199-z.
  • [28] Elwenspoek MMC, O’Donnell R, Jackson J, Everitt H, Gillett P, Hay AD, et al. Development and external validation of a clinical prediction model to aid coeliac disease diagnosis in primary care: an observational study. EClinicalMedicine 2022;46. https://doi.org/10.1016/j.eclinm.2022.101376 101376.
  • [29] Piccialli F, Calabrò F, Crisci D, Cuomo S, Prezioso E, Mandile R, et al. Precision medicine and machine learning towards the prediction of the outcome of potential celiac disease. Sci Rep 2021;11:1-10. https://doi.org/10.1038/s41598-021-84951-x.
  • [30] Tabacchi ME, Tegolo D, Cascio D, Valenti C, Sorce S, Gentile V, et al. A Fuzzy-based clinical decision support system for coeliac disease. IEEE Access 2022;10:1. https://doi.org/10.1109/access.2022.3208903.
  • [31] Rauber D, Mendel R, Scheppach MW, Ebigbo A, Messmann H, Palm C. Analysis of Celiac Disease with Multimodal Deep Learning BT - Bildverarbeitung für die Medizin 2022. In: K. Maier-Hein, T.M. Deserno, H. Handels, A. Maier, C. Palm, T. Tolxdorff (Eds.), Springer Fachmedien Wiesbaden, Wiesbaden, 2022: pp. 115-120.
  • [32] Green PHR. The Role of Endoscopy in the Diagnosis of Celiac Disease, Gastroenterol. Hepatol. (N.Y). 10 (2014) 522-524.
  • [33] Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PHR, et al. The Oslo definitions for coeliac disease and related terms. Gut 2013;62:43-52. https://doi.org/10.1136/gutjnl-2011-301346.
  • [34] Vriezinga SL, Schweizer JJ, Koning F, Mearin ML. Coeliac disease and gluten-related disorders in childhood. Nat Rev Gastroenterol Hepatol 2015;12:527-36. https://doi.org/10.1038/nrgastro.2015.98.
  • [35] Sharaiha RZ, Lebwohl B, Reimers L, Bhagat G, Green PH, Neugut AI. Increasing incidence of enteropathy-associated T-cell lymphoma in the United States, 1973-2008. Cancer 2012;118:3786-92. https://doi.org/10.1002/cncr.26700.
  • [36] Elli L, Contiero P, Tagliabue G, Tomba C, Bardella MT. Risk of intestinal lymphoma in undiagnosed coeliac disease: Results from a registered population with different coeliac disease prevalence. Dig Liver Dis 2012;44:743-7. https://doi.org/10.1016/j.dld.2012.04.020.
  • [37] John M. Eisenberg Center for Clinical Decisions and Communications Science, Diagnosis of Celiac Disease: Current State of the Evidence. Comp Eff Rev Summ Guid Clin 2007;108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27583323.
  • [38] Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol 2020;9:14. https://doi.org/10.1167/tvst.9.2.14.
  • [39] Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci 2021;2:160. https://doi.org/10.1007/s42979-021-00592-x.
  • [40] Han J, Pei J, Kamber M. Data Mining: Concepts and Techniques. Saint Louis: Elsevier Science & Technology; 2011.
  • [41] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372. https://doi.org/10.1136/bmj.n71.
  • [42] Suresh K, Chandrashekara S. Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci 2012;5:7-13. https://doi.org/10.4103/0974-1208.97779.
  • [43] Ciaccio EJ, Bhagat G, Lewis SK, Green PH. Extraction and processing of videocapsule data to detect and measure the presence of villous atrophy in celiac disease patients. Comput Biol Med 2016;78:97-106. https://doi.org/10.1016/j.compbiomed.2016.09.009.
  • [44] Ciaccio EJ, Bhagat G, Lewis SK, Green PH. Recommendations to quantify villous atrophy in video capsule endoscopy images of celiac disease patients, World. J Gastrointest Endosc 2016;8:653-62. https://doi.org/10.4253/wjge.v8.i18.653.
  • [45] Lis K, Koryciński M, Ciecierski KA. Classification of masked image data. PLoS One 2021;16:1-14. https://doi.org/10.1371/journal.pone.0254181.
  • [46] Kanan C, Cottrell GW. Color-to-grayscale: does the method matter in image recognition? PLoS One 2012;7:e29740-e. https://doi.org/10.1371/journal.pone.0029740.
  • [47] Ciaccio EJ, Dunn SM, Akay M. Biosignal pattern recognition and interpretation systems. IEEE Eng Med Biol Mag 1993;12:89-95. https://doi.org/10.1109/51.232348.
  • [48] Kim TK. T test as a parametric statistic. Korean J Anesthesiol 2015;68:540-6. https://doi.org/10.4097/kjae.2015.68.6.540.
  • [49] Vidya KS, Ng EYK, Acharya UR, Chou SM, Tan RS, Ghista DN. Computer-aided diagnosis of Myocardial Infarction using ultrasound images with DWT, GLCM and HOS methods: A comparative study. Comput Biol Med 2015;62:86-93. https://doi.org/10.1016/j.compbiomed.2015.03.033.
  • [50] Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JEW, Hong TJ, et al. Automated Characterization of Fatty Liver Disease and Cirrhosis Using Curvelet Transform and Entropy Features Extracted from Ultrasound Images. Comput Biol Med 2016;79:250-8. https://doi.org/10.1016/j.compbiomed.2016.10.022.
  • [51] Chan YM, Ng EYK, Jahmunah V, Koh JEW, Oh SL, Han WS, et al. Automated detection of glaucoma using elongated quinary patterns technique with optical coherence tomography angiogram images. Biomed Signal Process Control 2021;69. https://doi.org/10.1016/j.bspc.2021.102895102895.
  • [52] Rajkovic N, Ciric J, Milosevic N, Saponjic J. Novel application of the gray-level co-occurrence matrix analysis in the parvalbumin stained hippocampal gyrus dentatus in distinct rat models of Parkinson’s disease. Comput Biol Med 2019;115. https://doi.org/10.1016/j.compbiomed.2019.103482103482.
  • [53] Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, et al. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images. Comput Biol Med 2018;95:55-62. https://doi.org/10.1016/j.compbiomed.2018.02.002.
  • [54] Al-Sumaidaee SAM, Abdullah MAM, Al-Nima RRO, Dlay SS, Chambers JA. Multi-gradient features and elongated quinary pattern encoding for image-based facial expression recognition. Pattern Recogn 2017;71:249-63. https://doi.org/10.1016/j.patcog.2017.06.007.
  • [55] Chao W. Gabor wavelet transform and its application. Mech Syst Sig Process 2010;24:823-34.
  • [56] Jahmunah V, Ng EYK, San TR, Acharya UR. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput Biol Med 2021;134. https://doi.org/10.1016/j.compbiomed.2021.104457 104457.
  • [57] Clausi DA, Ed Jernigan M. Designing Gabor filters for optimal texture separability. Pattern Recognit 2000;33:1835-49. https://doi.org/10.1016/S0031-3203(99)00181-8.
  • [58] Koh JEW, De Michele S, Sudarshan VK, Jahmunah V, Ciaccio EJ, Ooi CP, et al. Automated interpretation of biopsy images for the detection of celiac disease using a machine learning approach. Comput Methods Programs Biomed 2021;203. https://doi.org/10.1016/j.cmpb.2021.106010 106010.
  • [59] Sparavigna AC. Entropy in image analysis III. Entropy 2021;23. https://doi.org/10.3390/e23121648.
  • [60] Nayak SR, Mishra J, Palai G. Analysing roughness of surface through fractal dimension: a review. Image Vis Comput 2019;89:21-34. https://doi.org/10.1016/j.imavis.2019.06.015.
  • [61] Hu M-K. Visual pattern recognition by moment invariants. IRE Trans Inf Theory 1962;8:179-87. https://doi.org/10.1109/TIT.1962.1057692.
  • [62] A. Vecsei, T. Fuhrmann, A. Uhl, Towards automated diagnosis of celiac disease by computer-assisted classification of duodenal imagery, in: 4th IET Int. Conf. Adv. Medical, Signal Inf. Process. - MEDSIP 2008, 2008: pp. 1-4. https://doi.org/10.1049/cp:20080465.
  • [63] Vécsei A, Fuhrmann T, Liedlgruber M, Brunauer L, Payer H, Uhl A. Automated classification of duodenal imagery in celiac disease using evolved Fourier feature vectors. Comput Methods Programs Biomed 2009;95:S68-78. https://doi.org/10.1016/j.cmpb.2009.02.017.
  • [64] S. Hegenbart, R. Kwitt, M. Liedlgruber, A. Uhl, A. Vecsei, Impact of duodenal image capturing techniques and duodenal regions on the performance of automated diagnosis of celiac disease. In: 2009 Proc. 6th Int. Symp. Image Signal Process. Anal., 2009: pp. 718-723. https://doi.org/10.1109/ISPA.2009.5297637.
  • [65] Hegenbart S, Uhl A, Vécsei A. In: Impact of Histogram Subset Selection on Classification using Multi-scale LBPOperators. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2011. p. 359-63. https://doi.org/10.1007/978-3-642-19335-4_74.
  • [66] Vécsei A, Amann G, Hegenbart S, Liedlgruber M, Uhl A. Automated Marsh-like classification of celiac disease in children using local texture operators. Comput Biol Med 2011;41:313-25. https://doi.org/10.1016/j.compbiomed.2011.03.009.
  • [67] Gadermayr M, Kogler H, Karla M, Merhof D, Uhl A, Vécsei A. Computer-aided texture analysis combined with experts’ knowledge: Improving endoscopic celiac disease diagnosis. World J Gastroenterol 2016;22:7124-34. https://doi.org/10.3748/wjg.v22.i31.7124.
  • [68] Koay DSC, Ghumman A, Pu LZCT, Singh R. Narrow-band imaging with magnification and the water immersion technique: a case-finding, cost-effective approach to diagnose villous atrophy. Singapore Med J 2019;60:522-5. https://doi.org/10.11622/smedj.2019131.
  • [69] Gadermayr M, Liedlgruber M, Uhl A, Vécsei A. Evaluation of different distortion correction methods and interpolation techniques for an automated classification of celiac disease. Comput Methods Programs Biomed 2013;112:694-712. https://doi.org/10.1016/j.cmpb.2013.07.001.
  • [70] Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PHR. Classification of videocapsule endoscopy image patterns: Comparative analysis between patients with celiac disease and normal individuals. Biomed Eng Online 2010;9. https://doi.org/10.1186/1475-925x-9-44.
  • [71] Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PHR. Robust spectral analysis of videocapsule images acquired from celiac disease patients. Biomed Eng Online 2011;10:78. https://doi.org/10.1186/1475-925X-10-78.
  • [72] Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PHR. Transformation of videocapsule images to detect small bowel mucosal differences in celiac versus control patients. Comput Methods Programs Biomed 2011;108:28-37. https://doi.org/10.1016/j.cmpb.2011.12.008.
  • [73] Ciaccio EJ. Implementation of a polling protocol for predicting celiac disease in videocapsule analysis. World J Gastrointest Endosc 2013;5:313. https://doi.org/10.4253/wjge.v5.i7.313.
  • [74] Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PHR. Use of basis images for detection and classification of celiac disease. Biomed Mater Eng 2014;24(6):1913-23.
  • [75] Vicnesh J, Wei JKE, Ciaccio EJ, Oh SL, Bhagat G, Lewis SK, et al. Automated diagnosis of celiac disease by video capsule endoscopy using DAISY Descriptors. J Med Syst 2019;43. https://doi.org/10.1007/s10916-019-1285-6.
  • [76] Koh JEW, Hagiwara Y, Oh SL, Tan JH, Ciaccio EJ, Green PH, et al. Automated diagnosis of celiac disease using DWT and nonlinear features with video capsule endoscopy images. Futur Gener Comput Syst 2019;90:86-93. https://doi.org/10.1016/j.future.2018.07.044.
  • [77] Ciaccio EJ, Lewis SK, Bhagat G, Green PH. Color masking improves classification of celiac disease in videocapsule endoscopy images. Comput Biol Med 2019;106:150-6. https://doi.org/10.1016/j.compbiomed.2018.12.011.
  • [78] Chen RC, Dewi C, Huang SW, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data 2020;7. https://doi.org/10.1186/s40537-020-00327-4.
  • [79] Zhou T, Han G, Li BN, Lin Z, Ciaccio EJ, Green PH, et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method. Comput Biol Med 2017;85:1-6. https://doi.org/10.1016/j.compbiomed.2017.03.031.
  • [80] Wei JW, Wei JW, Jackson CR, Ren B, Suriawinata AA, Hassanpour S. Automated detection of celiac disease on duodenal biopsy slides: a deep learning approach. J Pathol Inform 2019;10:7. https://doi.org/10.4103/jpi.jpi_87_18.
  • [81] Syed S, Al-Boni M, Khan MN, Sadiq K, Iqbal NT, Moskaluk CA, et al. Assessment of machine learning detection of environmental enteropathy and celiac disease in children. JAMA Netw Open 2019;2.
  • [82] Wang X, Qian H, Ciaccio EJ, Lewis SK, Bhagat G, Green PH, et al. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep feature extraction. Comput Methods Programs Biomed 2020;187. https://doi.org/10.1016/j.cmpb.2019.105236 105236.
  • [83] Tenório JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fátima Marin H. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease. Int J Med Inf 2011;80:793-802. https://doi.org/10.1016/j.ijmedinf.2011.08.001.
  • [84] Raiteri A, Granito A, Giamperoli A, Catenaro T, Negrini G, Tovoli F. Current guidelines for the management of celiac disease: a systematic review with comparative analysis. World J Gastroenterol 2022;28:154-75. https://doi.org/10.3748/wjg.v28.i1.154.
  • [85] Marlicz W, Koulaouzidis A. Celiac disease and small-bowel enteropathy – Seeing beyond the haze, the mist and the fog. Comput Biol Med 2019;104:352-3. https://doi.org/10.1016/j.compbiomed.2018.12.003.
  • [86] Al-Toma A, Volta U, Auricchio R, Castillejo G, Sanders DS, Cellier C, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur Gastroenterol J 2019;7:583-613. https://doi.org/10.1177/2050640619844125.
  • [87] Soffer S, Klang E, Shimon O, Nachmias N, Eliakim R, Ben-Horin S, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastrointest Endosc 2020;92:831-839.e8. https://doi.org/10.1016/j.gie.2020.04.039.
  • [88] Valdivia PC, Skonieczna-Żydecka K, Elosua A, Sciberras M, Piccirelli S, Rullan M, et al. Indications, detection, completion and retention rates of capsule endoscopy in two decades of use: a systematic review and meta-analysis. Diagnostics 2022;12. https://doi.org/10.3390/diagnostics12051105.
  • [89] Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M, et al. Eur Heart J 2016;37(2016):3232-45.
  • [90] Molder A, Balaban DV, Jinga M, Molder C-C. Current evidence on computer-aided diagnosis of celiac disease: systematic review. Front Pharmacol 2020;11:341. https://doi.org/10.3389/fphar.2020.00341.
  • [91] Horton RK, Hagen CE, Snyder MR. Pediatric celiac disease: a review of diagnostic testing and guideline recommendations. J Appl Lab Med 2022;7:294-304. https://doi.org/10.1093/jalm/jfab143.
  • [92] Mosca C, Thorsteinsdottir F, Abrahamsen B, Rumessen JJ, Händel MN. Newly diagnosed celiac disease and bone health in young adults: a systematic literature review. Calcif Tissue Int 2022;110:641-8. https://doi.org/10.1007/s00223-021-00938-w.
  • [93] Ștefan Busnatu AG, Niculescu A, Bolocan GED, Petrescu DN, Păduraru I, Năstasă M, et al. Clinical applications of artificial intelligence—An updated overview. J Clin Med 2022;11. https://doi.org/10.3390/jcm11082265.
  • [94] Del Sordo R, Volta U, Lougaris V, Parente P, Sidoni A, Facchetti M, et al. Histological features of celiac-disease-like conditions related to immune checkpoint inhibitors therapy: a signal to keep in mind for pathologists. Diagnostics 2022;12. https://doi.org/10.3390/diagnostics12020395.
  • [95] Sheppard AL, Elwenspoek MMC, Scott LJ, Corfield V, Everitt H, Gillett PM, et al. Systematic review with meta-analysis: the accuracy of serological tests to support the diagnosis of coeliac disease. Aliment Pharmacol Ther 2022;55:514-27. https://doi.org/10.1111/apt.16729.
  • [96] Costa A, Brito GAP. Anthropometric parameters in celiac disease: a review on the different evaluation methods and disease effects. J Nutr Metab 2019;2019:4586963. https://doi.org/10.1155/2019/4586963.
  • [97] Charlesworth RP. Diagnosing coeliac disease: Out with the old and in with the new?World J Gastroenterol 2020;26:1-10. https://doi.org/10.3748/wjg.v26.i1.1.
  • [98] Månsson AL, Meijer-Boekel C, Mårild K. Utilization and effectiveness of ehealth technology in the follow-up of celiac disease: a systematic review. J Pediatr Gastroenterol Nutr 2022;74.
  • [99] Lewis SK, Semrad CE. Capsule endoscopy and enteroscopy in celiac disease. Gastroenterol Clin North Am 2019;48:73-84. https://doi.org/10.1016/j.gtc.2018.09.005.
  • [100] Piccirelli S, Milluzzo SM, Bizzotto A, Cesaro P, Pecere S, Spada C. Small Bowel Capsule Endoscopy and artificial intelligence: first or second reader? Best Pract Res Clin Gastroenterol 2021;52-53. https://doi.org/10.1016/j.bpg.2021.101742 101742.
  • [101] Gadermayr M, Wimmer G, Kogler H, Vécsei A, Merhof D, Uhl A. Automated classification of celiac disease during upper endoscopy: Status quo and quo vadis. Comput Biol Med 2018;102:221-6. https://doi.org/10.1016/j.compbiomed.2018.04.020.
  • [102] Seehusen DD, Dean A, Eisenhower,. Comparative Accuracy of Diagnostic Tests for Celiac Disease. Am Fam Physician 2017;95:726-8. Available from: https://www.aafp.org/afp/2017/0601/p726.html.
  • [103] Hegenbart S, Uhl A, Vécsei A. Survey on computer aided decision support for diagnosis of celiac disease. Comput Biol Med 2015;65:348-58. https://doi.org/10.1016/j.compbiomed.2015.02.007.
  • [104] Kwitt R, Hegenbart S, Rasiwasia N, Vécsei A, Uhl A. Do We Need Annotation Experts? A Case Study in Celiac Disease Classification, in: Springer International Publishing, Cham, 2014: pp. 454-461. https://doi.org/10.1007/978-3-319-10470-6_57.
  • [105] Gadermayr M, Uhl A, Vécsei A. Fully automated decision support systems for celiac disease diagnosis. Ingénierie Rech Biomédicale 2015;37:31-9. https://doi.org/10.1016/j.irbm.2015.09.009.
  • [106] Saken M, Banzragch Yağci M, Yumuşak N. Impact of image segmentation techniques on celiac disease classification using scale invariant texture descriptors for standard flexible endoscopic systems. Turkish J Electr Eng Comput Sci 2021;29:598-615. https://doi.org/10.3906/ELK-2002-171.
  • [107] Ciaccio EJ, Tennyson CA, Bhagat G, Lewis SK, Green PH. Methods to quantitate videocapsule endoscopy images in celiac disease. Biomed Mater Eng 2014;24:1895-911. https://doi.org/10.3233/BME-140999.
  • [108] Ciaccio EJ, Bhagat G, Tennyson CA, Lewis SK, Hernandez L, Green PHR. Quantitative assessment of endoscopic images for degree of villous atrophy in celiac disease. Dig Dis Sci 2010;56:805-11. https://doi.org/10.1007/s10620-010-1371-6.
  • [109] Wimmer G, Vécsei A, Häfner M, Uhl A. Fisher encoding of convolutional neural network features for endoscopic image classification. J Med Imaging (Bellingham Wash) 2018;5:34504. https://doi.org/10.1117/1.JMI.5.3.034504.
  • [110] Kowsari K, Sali R, Ehsan L, Adorno W, Ali A, Moore S, et al. HMIC: Hierarchical medical image classification, a deep learning approach. Inf 2020;11:1-19. https://doi.org/10.3390/INFO11060318.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58a32f1e-035f-47a1-9e4a-602fd116b6e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.