PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An estimation of lithium-ion battery state of health - ageing-included modelling and experimental studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Estymacja stanu baterii litowo-jonowych - modelowanie starzenia i badania eksperymentalne
Języki publikacji
EN
Abstrakty
EN
In this paper we present a study on Li-Ion Battery (LIB) modelling, including battery ageing profile, as a ground for development of state of health (SoH) prediction and monitoring system. An influence of LIB ageing was included by the mean of ageing module, based on voltage, resistance and capacity characteristics, resulting from preliminary experimental measurements. Our model, based on equivalent circuit model (ECM) and parameter estimation procedure, was implemented in MATLAB software and then validated. The simulation results are used for battery SoH estimation, which may be use in a future to optimize the conditions of LIB cycling and therefore extend the battery lifetime.
PL
Niniejszy artykuł przedstawia badania nad stworzeniem modelu baterii litowo-jonowej, uwzględniającego procesy starzenia baterii, jako podstawę do budowy systemu monitorowania stanu baterii. Wpływ procesów starzenia został uwzględniony za pomocą specjalnego modułu, zdefiniowanego przy pomocy parametrów (tj. charakterystyki napięciowe, impedancyjne, pojemnościowe) uzyskanych na drodze pomiarów eksperymentalnych. Opracowany model, oparty na równoważnym dwugałęziowym modelu elektrycznym RC, został zaimplementowany w środowisku MATLAB, a następnie poddany walidacji. Wyniki przeprowadzonych symulacji wykorzystano do opracowania algorytmu estymacji stanu baterii, który w przyszłości może posłużyć do optymalizacji warunków pracy ogniw litowo-jonowych.
Czasopismo
Rocznik
Strony
25--34
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronice, Mickiewicza 30 Av., 30-059 Krakow, Poland, fax: (012) 634-35-05
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronice, Mickiewicza 30 Av., 30-059 Krakow, Poland, fax: (012) 634-35-05
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronice, Mickiewicza 30 Av., 30-059 Krakow, Poland, fax: (012) 634-35-05
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronice, Mickiewicza 30 Av., 30-059 Krakow, Poland, fax: (012) 634-35-05
Bibliografia
  • 1. Etacheri V, Marom R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci., 2011; 4(9):3243–3262. http://dx.doi.org/10.1039/C1EE01598B.
  • 2. Millner A. Modeling lithium ion battery degradation in electric vehicles. IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, 2010; 349–356. http://dx.doi.org/10.1109/CITRES.2010.5619782.
  • 3. Huria T, Ceraolo M, et al. High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells. IEEE Int. Electr. Veh. Conf., 2012; 1–8. http://dx.doi.org/10.1109/IEVC.2012.6183271.
  • 4. Batko W, Korbiel T, et al. Phase trajectory as a tool for assessing degradation processes in a displacement pump. Diagnostyka, 2010; 4(56):69–74.
  • 5. Kaźmierczak H, Pawłowski T, et al. Energetic modes in description of structural degradation of constructional materials. Diagnostyka, 2011; 1(57):25–29.
  • 6. Ekiert M, Mlyniec A, Uhl T. The influence of degradation on the viscosity and molecular mass of poly(lactide acid) biopolymer. Diagnostyka, 2015;16(4):63-70.
  • 7. Mlyniec A, Ekiert M, et al. Influence of density and environmental factors on decomposition kinetics of amorphous polylactide - Reactive molecular dynamics studies. Journal of Molecular Graphics and Modelling, 2016 (in press) http://dx.doi.org/10.1016/j.jmgm.2016.04.010.
  • 8. Mlyniec A, Morawska-Chochol A, et al. Phenomenological and chemomechanical modeling of the thermomechanical stability of liquid silicone rubbers. Polym. Degrad. Stab, 2014; 99:290–297. http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.018.
  • 9. Korta J, Mlyniec A, Uhl T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints. Compos. Part B Eng., 2015; 79(1):621–630. http://dx.doi.org/10.1016/j.compositesb.2015.05.020.
  • 10. Agubra V, Fergus J. Lithium Ion Battery Anode Aging Mechanisms. Materials (Basel), 2013;6(4):1310–1325. http://dx.doi.org/10.3390/ma6041310.
  • 11. Bloom I, Cole BW, et al. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources. 2001;101(2):238–247. http://dx.doi.org/10.1016/S0378-7753(01)00783-2.
  • 12. Ramadass P, Haran B, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis. J. Power Sources, 2002;112(2):614–620. http://dx.doi.org/10.1016/S0378-7753(02)00473-1.
  • 13. Wang C, Appleby AJ, et al. Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim. Acta, 2001; 46(12):1793–1813. http://dx.doi.org/10.1016/S0013-4686(00)00782-9.
  • 14. Peled E, Bar Tow D, et al. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. Journal of Power Sources, 2001;52–57 http://dx.doi.org/10.1016/S0378-7753(01)00505-5.
  • 15. Novák P, Joho F, et al. The complex electrochemistry of graphite electrodes in lithium-ion batteries. J. Power Sources, 2001;97-98:39–46. http://dx.doi.org/10.1016/S0378-7753(01)00586-9.
  • 16. Lee JK, Smith KB, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun., 2010; 46(12):2025–7. http://dx.doi.org/10.1039/b919738a.
  • 17. Spotnitz R. Simulation of capacity fade in lithium-ion batteries. J. Power Sources, 2003;113(1):72–80. http://dx.doi.org/10.1016/S0378-7753(02)00490-1.
  • 18. Myung ST, Hitoshi Y, et al. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem., 2011;21(27):9891. http://dx.doi.org/10.1039/c0jm04353b.
  • 19. Liu J, Liu N, et al. Improving the Performances of LiCoO2 Cathode Materials by Soaking Nano-Alumina in Commercial Electrolyte. J. Electrochem. Soc., 2007;154(1):A55. http://dx.doi.org/10.1149/1.2388731.
  • 20. Li G, Yang Z, et al. Effect of FePO4 coating on electrochemical and safety performance of LiCoCO2 as cathode material for Li-ion batteries. J. Power Sources, 2008; 183(2):741–748. http://dx.doi.org/10.1016/j.jpowsour.2008.05.047.
  • 21. Wuersig A, Scheifele W, et al. CO2 Gas Evolution on Cathode Materials for Lithium-Ion Batteries. J. Electrochem. Soc., 2007; 154(5):A449. http://dx.doi.org/10.1149/1.2712138.
  • 22. Kumai K, Miyashiro H, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999; 81-82:715–719. http://dx.doi.org/10.1016/S0378-7753(98)00234-1.
  • 23. Vetter J, Novák P, et al. Ageing mechanisms in lithium-ion batteries. J. Power Sources, 2005;147(1-2):269–281. http://dx.doi.org/10.1016/j.jpowsour.2005.01.006.
  • 24. Barré A, Deguilhem B, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources, 2013;241:680–689. http://dx.doi.org/10.1016/j.jpowsour.2013.05.040.
  • 25. Berecibar M, Gandiaga I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev., 2016;56:572–587. http://dx.doi.org/10.1016/j.rser.2015.11.042.
  • 26. Weng C, Sun J, et al. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. J. Power Sources, 2014; 258:228–237. http://dx.doi.org/10.1016/j.jpowsour.2014.02.026.
  • 27. Fellner JP, Loeber GJ, Sandhu SS, Testing of lithium-ion 18650 cells and characterizing/predicting cell performance, J. Power Sources, 1999; 81-82:867-871. http://dx.doi.org/10.1016/S0378-7753(98)00238-9.
  • 28. Omar N, Monem MA, et al. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model. Appl. Energy, 2014;113:1575–1585. http://dx.doi.org/10.1016/j.apenergy.2013.09.003.
  • 29. Jackey R, Saginaw M, et al. Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell. SAE Tech. Pap., 2013; 01:1547. http://dx.doi.org/10.4271/2013-01-1547.
  • 30. Stepinski T, Uhl T, et al. Advanced Structural Damage Detection. 2013; Chichester, UK: John Wiley & Sons. http://dx.doi.org/10.1002/9781118536148.
  • 31. Rahmoun A, Biechl H. Modelling of Li-ion batteries using equivalent circuit diagrams. Electr. Rev., 2012; 88(7b):152–156.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58a163ad-fa51-4533-ad5c-3e16819a6a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.