PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of Ti addition on the microstructure and fracture toughness of BN-Al composite materials synthesized by vacuum infiltration

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatku Ti na mikrostrukturę i odporność na pękanie kompozytów BN-Al wytworzonych przez infiltrację w próżni
Języki publikacji
EN
Abstrakty
EN
In this paper, we studied the effect of Ti addition on the microstructure and fracture toughness of Boron nitride- Aluminum (BN-Al) composite materials that were synthesized by vacuum infiltration. The BN-Al composite materials were fabricated by preheating the [Ti+BN] preforms at 1700º for 1 hour before Al alloys were infiltrated into the preforms in a vacuum atmosphere at 1100º for 2 hours. X-ray diffraction (XRD) patterns showed that the diffraction peaks of titanium diboride (TiB2) appeared when the [Ti+BN] preforms were preheated. It is thought that metal Al protected are visible and this could be achieved by the generation of TiB2 when Al infiltrated into the preform from fractography. The matching fracture toughness of the [Ti+BN] preforms gradually improve when Ti content was increased.
PL
W niniejszej pracy badano wpływ dodatku Ti na mikrostrukturę i odporność na pękanie kompozytów aluminium-azotek boru (BN-Al), które zostały zsyntetyzowane przez infiltracje w próżni. Kompozyty BN-Al zostały wykonane przez podgrzewanie preform [Ti+BN] w 1700ºC przez 1 godzinę, po czym stopy aluminium infiltrowano do preform w atmosferze próżni w temperaturze 1100ºC przez 2 godziny. Dyfrakcja rentgenowska (XRD) wykazała, że piki dyfrakcyjne diborku tytanu (TiB2) pojawiły się gdy preformy [Ti+BN] zostały podgrzane. Uważa się, że aluminium jest chronione co widoczne jest na przełomach i może to być osiągniete przez wytwarzanie TiB2 gdy Al przeniknęło do preformy. Odporność na pękanie preform [Ti+BN] stopniowo poprawia się, gdy zawartość Ti została zwiększona.
Twórcy
autor
  • School of Materials and Metallurgy, Northeastern University, Liaoning Key Lab For Cologically Comprehensive Utilization of Boron Resource and Materials, Engineering and Technology Research Center for Boron Resource Comprehensive Development and Application of Liaoning Province, Shenyang 110004, China
autor
  • School of Materials and Metallurgy, Northeastern University, Liaoning Key Lab For Cologically Comprehensive Utilization of Boron Resource and Materials, Engineering and Technology Research Center for Boron Resource Comprehensive Development and Application of Liaoning Province, Shenyang 110004, China
autor
  • School of Materials and Metallurgy, Northeastern University, Liaoning Key Lab For Cologically Comprehensive Utilization of Boron Resource and Materials, Engineering and Technology Research Center for Boron Resource Comprehensive Development and Application of Liaoning Province, Shenyang 110004, China
autor
  • School of Materials and Metallurgy, Northeastern University, Liaoning Key Lab For Cologically Comprehensive Utilization of Boron Resource and Materials, Engineering and Technology Research Center for Boron Resource Comprehensive Development and Application of Liaoning Province, Shenyang 110004, China
autor
  • School of Materials and Metallurgy, Northeastern University, Liaoning Key Lab For Cologically Comprehensive Utilization of Boron Resource and Materials, Engineering and Technology Research Center for Boron Resource Comprehensive Development and Application of Liaoning Province, Shenyang 110004, China
Bibliografia
  • [1] K. B. Lee, J. P. Ahn, H. Kwon, Characteristics of AA6061/BN Composite Fabricated by Pressureless Infiltration Technique, Metallurgical and Materials Transactions A 32A, 1007-1018 (2001).
  • [2] Q. Jiang, H. Wang, B. Ma, Y. Wang, F. Zhao, Fabrication of B4Cparticulate reinforced magnesium matrix composite by powder metallurgy, Journal of Alloys and Compounds 386 1-2, 177-181 (2005).
  • [3] A. E. Karantzalis, A. Lekatou, M. Georgatis, V. Poulas, H. Mavros, Casting-Based Production of Al-Ti C-Al B2 Composite Material Through the Use of KBF4 Salt, Journal of Materials Engineering and Performance 20, 198-202 (2010).
  • [4] J. Lelito, P. Zak, J. S. Suchy, The grain nucleation rate of the AZ91/Si Ccomposite based on maxwell-hellawell model, Archives of metallurgy and materials 54 2, 347-350 (2009).
  • [5] D. L. Zhang, C. Brindley, B. Cantor, The microstructures of aluminium alloy metal-matrix composites manufactured by squeeze casting, JOURNAL OF MATERIALS SCIENCE 28, 2267-2272 (1993).
  • [6] M. Ghomashchi, A. Vikhrov, Squeeze casting: an overview, Journal of Materials Processing Technology 101 1-3, 1-9 (2000).
  • [7] J. A. Aguilar-Martınez, M. I. Pech-Canul, M. Rodrıguez-Reyes, J. L. D. L. Pena, Effect of process ing parameters on the degree of infiltration of Si Cp preforms by Al-Si-Mg alloys, Materials Letters 57, 4332-4335 (2003).
  • [8] B. S. S. Daniel, V. S. R. Murthy, Nickel aluminide reinforced Al N/Al composites by pressureless infiltration, Materials Letters 37, 334-339 (1998).
  • [9] A. Farid, S. Guo, Development of Si3N4/A1 composite by pressureless melt infiltration, Transactions of Nonferrous Metals Society of China 16, 629-632 (2006).
  • [10] A. M. Zahedi, H. R. Rezaie, J. Javadpour, M. Mazaheri, M. G. Haghighi, Processing and impact behavior of Al/Si Cp composites fabricated by the pressureless melt infiltration method, Ceramics International 35, 1919-1926 (2009).
  • [11] S. Ren, X. He, X. Qu, I.S. Humail, Y. Li, Effect of Si addition to Al-8Mg alloy on the microstructure and thermo-physical properties of Si Cp/Al composites prepared by pressureless infiltration, Materials Science and Engineering B 138, 263-270 (2007).
  • [12] X. M. Xue, J. T. Wang, M. X. Quan, Wetting characteristics and interfacial reaction of liquid aluminium on hot-pressed boron nitride substrate, Materials Science and Engineering A 132, 277-280 (1991).
  • [13] L. Shen, B. J. Tan, W. S. Willis, F. S. Galasso, S. L. Suib, Characterization of Dip-Coated Boron Nitride on Silicon Carbide Fibers, Journal of the American Ceramic Society 77 4, 1011-1016 (1994).
  • [14] H. Fujii, H. Nakae, K. Okada, Interfacial reaction wetting in the boron nitride/molten aluminum system, Acta metallurgica et materialia 41 10, 2963-2971 (1993).
  • [15] M. Kobashi, T. Choh, Synthesis of boride and nitride ceramics in molten aluminium by reactive infiltration, JOURNAL OF MATERIALS SCIENCE 32 23, 6283-6289 (1997).
  • [16] F. P. Chiaramonte, B. N. Rosenthal, Wettability of pyrolytic boron nitride by aluminum, Journal of the American Ceramic Society 74 3, 658-661 (1991).
  • [17] K. Lee, H. Sim, S. Heo, H. Yoo, S. Cho, H. Kwon, Tensile properties and microstructures of Al composite reinforced with BN particles, Composites Part A: Applied Science and Manufacturing 33 5, 709-715 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-589fdcab-24bf-4f14-9def-57dfcc829ded
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.