PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dimension-Stone Quarrying Optimization through Integrated Modelling between Joint Sets and Cutting Grid: a Case Study at Tan Long Dimension Stone Quarry in Southcentral Coastal Province of Binh Dinh

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja wydobycia kamienia blocznego poprzez zintegrowane modelowanie cięcia: studium przypadku w kamieniołomie kamienia Tan Long Dimension w południowo-środkowej prowincji Binh
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
Dimension-stone quarrying optimization is significantly important to increase the recovery ratio of dimension stone and to reduce the cutting cost. Due to fracture-existed rock mass, in the mining operation block size and mining direction influences to the recovery ratio and the cutting cost. Therefore, the paper suggests the quarrying optimization for dimension stone to obtain the highest recovery ratio and the lowest cutting cost, based on optimizing block size and mining direction to get a cutting grid of dimension stone. Through developing an integrated modelling between joint set modelling and cutting grid modelling, intact blocks and fractured blocks were generated. From this, block statistics were conducted to get the maximum recovery ratio of dimension stone and the minimum cutting rate between the cutting area and the recovered block volume, which helps to choose an optimizing block size and mining direction. The research was carried out at Tan Long dimension stone quarry where a block size (0.9m x 0.6m x 1.35m) and a mining direction paralleling to joint set 1 will ensure the highest recovery ratio of 13.87% and the lowest cutting rate of 25 m2/m3.
Rocznik
Strony
239--248
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr., zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien Street, Hanoi, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) research group, Hanoi University of Mining and Geology, Hanoi, 100000, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien Street, Hanoi, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) research group, Hanoi University of Mining and Geology, Hanoi, 100000, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien Street, Hanoi, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) research group, Hanoi University of Mining and Geology, Hanoi, 100000, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien Street, Hanoi, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) research group, Hanoi University of Mining and Geology, Hanoi, 100000, Vietnam
Bibliografia
  • 1. L. Sousa, J. Barabasch, K.-J. Stein, and S. Siegesmund, “Characterization and quality assessment of granitic building stone deposits: A case study of two different Portuguese granites,” Eng. Geol., vol. 221, pp. 29–40, 2017, doi:10.1016/j.enggeo.2017.01.030.
  • 2. B. Sohrabian and Y. Ozcelik, “Determination of exploitable blocks in an andesite quarry using independent component kriging,” Int. J. Rock Mech. Min. Sci., vol. 55, pp. 71–79, 2012, doi: 10.1016/j.ijrmms.2012.06.009.
  • 3. J. Taboada, T. Rivas, A. Saavedra, C. Ordóñez, F. Bastante, and E. Giráldez, “Evaluation of the reserve of a granite deposit by fuzzy kriging,” Eng. Geol., vol. 99, no. 1–2, pp. 23–30, 2008, doi: 10.1016/j.enggeo.2008.02.001.
  • 4. N. A. Tuan., P. Van Viet., L. Van Quyen., N. T. Anh., and L. T. Hai., “Determining for an output capacity of dimension stone exploitation from the computer simulations to generate the Fracture Networks.pdf,” Pol-Viet, Pol., p. 39, 2019.
  • 5. M. Mutlutürk, “Determining the amount of marketable blocks of dimensional stone before actual extraction,” J. Min. Sci., vol. 43, no. 1, pp. 67–72, 2007.
  • 6. S. Mosch, D. Nikolayew, O. Ewiak, and S. Siegesmund, “Optimized extraction of dimension stone blocks,” Environ. Earth Sci., vol. 63, no. 7, pp. 1911–1924, 2011, doi: 10.1007/s12665-010-0825-7.
  • 7. M. Fernández-de Arriba, M. E. Díaz-Fernández, C. González-Nicieza, M. I. Álvarez-Fernández, and A. E. Álvarez-Vigil, “A computational algorithm for rock cutting optimisation from primary blocks,” Comput. Geotech., vol. 50, pp. 29–40, 2013, doi: 10.1016/j.compgeo.2012.11.010.
  • 8. R. Yarahmadi, R. Bagherpour, A. Khademian, and L. M. O. Sousa, “Determining the optimum cutting direction in granite quarries through experimental studies : a case study of a granite quarry,” 2017, doi: 10.1007/s10064-017-1158-5.
  • 9. N. M. Sirakov and F. H. Muge, “A system for reconstructing and visualising three-dimensional objects,” Comput. Geosci., vol. 27, no. 1, pp. 59–69, 2001, doi: 10.1016/S0098-3004(00)00055-8.
  • 10. R. E. HAMMAH, “Fuzzy Cluster Algorithm for the Automatic Identi®cation of Joint Sets.”
  • 11. Rocscience Inc. 2016, Dips Version 7.0 - Graphical and Statistical Analysis of Orientation Data. www.rocscience.com, Toronto, Ontario, Canada.
  • 12. Itasca Consulting Group, Inc. (2019) 3DEC — Three-Dimensional Distinct Element Code, Ver. 5.2. Minneapolis: Itasca.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-589c7135-4b2c-43db-b7a2-267d3549f72c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.