PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the mechanism of the difference in flotation performance between fine-grained crystalline SiO2 and amorphous SiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous minerals found in nature contain silica, including quartz, cristobalite, opal, etc. They have the same chemical composition but different crystal structures, and this phenomenon is called “polymorphism” in mineralogy. For these polymorphic and multi-like minerals, in the flotation process, will it directly or indirectly affect the flotation effect. Based on this, this study mainly explores the difference between crystalline SiO2 and amorphous SiO2 in flotation. In this study, two crystal forms of SiO2 were subjected to flotation and adsorption capacity tests. FTIR, other test techniques, the chemical calculation of the flotation solution, and the theoretical calculation of the DLVO can all be used to provide an explanation. Finally, in the flotation experiment, the feedbacks of the two minerals to the change of the pH value of the pulp and the change of the concentration of the reagent are different. Through the comprehensive analysis of the adsorption capacity test and semi-quantitative calculation of the infrared spectrum, the adsorption capacity of crystalline SiO2 to drugs is about 23% higher than amorphous SiO2. Furthermore, during the flotation process, the amorphous SiO2 particles will agglomerate together and entrain into the foam through, resulting in concentrate pollution. So amorphous SiO2 will undoubtedly increase the difficulty of flotation.
Rocznik
Strony
art. no. 174567
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
  • School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, China
autor
  • School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, China
autor
  • School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, China
autor
  • School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, China
Bibliografia
  • ABBAKER, A., ASLAN, N., 2023. The effect of microbubbles on coarse particle anionic flotation: analysis and optimization. Physicochem. Probl. Miner. Process. 59(6), 172298.
  • BERRO, Y., BADAWI, M., EL HAJ HASSAN, F., KASSIR, M., TIELENS, F., 2020. Water-silanol interactions on the amorphous silica surface: A dispersion-corrected DFT investigation, J. Mol. Liq. 320, 114496.
  • CAO, S., YIN, W., YANG, B., ZHU, Z., SUN, H., SHENG, Q., 2021. Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz, International Journal of Mining Science and Technology, 32(2), 399-409.
  • CHEN, X., HADDE, E., LIU, S., PENG, Y., 2017. The effect of amorphous silica on pulp rheology and copper flotation, Miner. Eng., 113. 41-46.
  • CHENG, H., WANG, H., HUANG, G., YANG, W., XU, T., ZHAO, J., 2020. Model and Verification of Clay Particle Separation Ability and Liquid-Solid Ratio Based on DLVO Theory, Journal Nanchang Institute of Technology, 39, 38-43
  • DING, Y., 2010. Study on the preparation of high-purity quartz from low-grade quartz ore, Northeastern University, p. 164
  • GAO, Y., GAO, Z., SUN, W., 2017., Effect of metal ions mineral fiotation behavior and mechanism research progress. China Nonferrous Gold Acta Petrolei Sinica. 27(04), 859-868.
  • GRIFFITHS, P.R., DE HASETH, J.A., 2006. Fourier Transform Infrared Spectrometry, John Wiley & Sons, Inc.
  • HIEMENZ, P.C., RAJAGOPALAN, R., 1997. Principles of Colloid and Surface Chemistry, Third Edition, Revised and Expanded, Taylor and Francis; CRC Press.
  • HU, P., LI, Q., LI, L., 2021. A review of characterization techniques of heterocoagulation between mineral particles in mineral separation process, Sep. Purif. Technol., 279, 119699.
  • HU, X., LI, G., SUN, M., HU, H., 2007. Crystal shape and particle size distribution control of silica powder used as raw material for quartz glass. China non-metallic mineral industry guide, 04, 41-43.
  • HU, Y., LIN, Y., 1990. Flotation solution chemistry, Metal ore beneficiation abroad, 1-7
  • LELIS, D.F., FERNANDES LIMA, R.M., ROCHA, G.M., LEÃO, V.A., 2022. Effect of Magnesium Species on Cationic Flotation of Quartz from Hematite, Min. Proc. Ext. Met. Rev. 43, 339-345.
  • LI, J., LIU, J., SUN, J., LI, X., ZHAO, J., GUO, X., 2021. Study on the Purification Effect of Amorphous Microsilica Fume by Flotation Method, Coal Preparation Technology, 136-141.
  • LIU, Y., TONG, X., XIE, R., XIAN, X., SONG, Q., FAN, P., 2023. Activation of quartz flotation by Cu2+, Ni2+ in the sodium ethylxanthogenate (EX) system. Physicochem. Probl. Miner. Process. 59(2), 166368.
  • LIANG, L., 2018. Study on selective aggregation mechanism of clay minerals in slime, CUMT.
  • LIU, W., WANG, X., PENG, X., DUAN, H., 2010. A spectrophotometric method for the detection of amine collectors, 201811226293[P]
  • LIU, Y., GONG, H., ZHANG, K., 1992. Adsorption mechansim of dodecylamine hydrochloride on feldspar quartz surface and effect of PH value on adsorption. China Mining Industry, 02, 92-96.
  • LU, J., GAO, H., JIN, J., CEN, D., REN, Z., 2016. Influence and mechanism of calcium ions on andalusite flotation, Chinese Journal of Nonferrous Metals 26, 1311-1315.
  • MARTÍNEZ-CARRILLO, D., URIBE-SALAS, A., 2018. An experimental study of the recovery of hydrophilic silica fines in column flotation, Miner. Eng. 21, 1102-1108.
  • MI, H., CHEN, Y., GAO, S., LIU, W., CHENG, H., 2018. Study on the relative wettability of fine-grained quartz and its flotation behavior, Mineral Conservation and Utilization, 93-99.
  • NYKÄNEN, V.P.S., BRAGA, A.S., PINTO, T.C.S., MATAI, P.H.L.S., LIMA, N.P., LEAL FILHO, L.S., MONTE, M.B.M., 2020. True flotation versus entrainment in reverse cationic flotation for the concentration of iron ore at industrial scale, Min. Proc. Ext. Met. Rev. 41, 11-21.
  • SHEN, Z., 2012. Colloid and surface chemistry. Chemical Industry press 2012.
  • SHI, T., ZHANG, T., 2017. Effects of crystal structure and surface properties on quartz flotation behavior, Acta Minera Sinica 37, 333-341.
  • WANG, D., 1988. Flotation Solution Chemistry,
  • WANG, Y., LI, J., ZHANG, W., LI, P., GUO, J., YAO, K., 2021. Citric acid inhibits the floatability of quartz in Mg2+ system, Physicochem. Probl. Miner. Process., 57(6), 1-11.
  • WANG, L., LI, M., ZOU, Y., 2023. Rheological properties and entrainment behavior of crystalline/amorphous silica in chalcopyrite flotation system, Joural of Engineering science, 45, 1272-1280.
  • WANG, G., SHUI, M., YUE, L., 2002. X-ray diffraction analysis of the structure and physicochemical properties of amorphous silica, Chinese Journal of Inorganic Chemistry, 991-996.
  • WEI, P., REN, L., HANG, Q., FANG, Z., 2018. Influence of cationic collectors on quartz fractionation flotation behavior, Mining and Metallurgical Engineering 38, 64-67.
  • WENG, S., 2010. Fourier transform infrared spectroscopy, Chemical Industry Press Pub., ISBN 10: 7122076385
  • WU, J., LI, J., LIN, J., YI, S., LI, M., SU, W., 2021. Infrared Fitting Spectral Analysis of Influence Mechanism of Microwave on Barite Flotation, Spectroscopy and Spectral Analysis 41, 3083-3091.
  • YE, J., WANG, X., 2018. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions, J. Disper. Technol. 39, 1655-1663.
  • YIN, W., SUN, C., 2021. Research status of Silicate mineral flotation principle. Mineral protection and Utilization, 03, 17-22.
  • ZHOU, K., 2015, Research on Quartz Surface Properties and Flotation, Guizhou University, p. 69
  • ZHOU, Q., WEI, J., ZHU, J., ZHU, R., TANG, C., HE, H., 2015. Computational simulation of differences in surface structure and hydration characteristics of silica homogeneous polymorphic minerals, The 15th Annual Conference of the Chinese Society of Mineralogy, Petrology and Geochemistry, China Changchun, Jilin, 3-44
  • ZHU, Z., YIN, W., WANG, D., SUN, H., CHEN, K., YANG, B., 2020. The role of surface roughness in the wettability and floatability of quartz particles, Appl. Surf. Sci. 527, 146799.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-589b49b3-bb26-49f6-b041-4ff6ec465edf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.