PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EL and ITG Characterization of Large Areas Black Silicon Solar Cells VIA Screen Printing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Elektroluminescencyjna i termograficzna metoda charakteryzowania wielko-powierzchniowych ogniw słonecznych z czarnego krzemu – zastosowanie druku sitowego
Języki publikacji
EN
Abstrakty
EN
A simple process of texturing silicon (Si) surfaces using gold (Au)-catalyzed wet chemical etching was used to form black Si (BS) on a (100) p-type substrate. The surface became uniformly black after 6 min, with a resulting reflectivity of < 2% over the 400 nm to 1100 nm wavelength range. Large areas (153.18 cm2) of black Si solar cells (BSSCs) with an n+-p-p+ structure were also fabricated using conventional processes, including POCl3 diffusion, screen printing, and co-firing. The resulting cells were divided into two groups according to the emitter (46 and 37 [omega]/􀀀), and their output parameters were studied. The best convention efficiency (Eff) was < 10%. The open-circuit voltage (Voc) was particularly low because of poor surface passivation, and the shunt resistance (Rsh) linearly decreased with the series resistance (Rs). Electroluminescence (EL) and infrared thermography (ITG) measurements were conducted to characterize the BSSCs. Both the emissivity and temperature were low and nonuniform. Optimizing the fabrication process by reducing the etching depth and lowering the dopant sheet resistance led to significant improvement in Voc (~48 mV) and Eff (~3.8% absolute). EL and ITG measurements indicate that Rs is another important factor that accounts for the poor properties of the BSSCs.
PL
W artykule opisano proces teksturowania powierzchni krzemowej w procesie wytrawiania chemicznego z katalizatorem w formie złota, na potrzeby produkcji czarnego krzemu (BS) na podłożu p. Zastosowane rozwiązanie m. in. optymalizacji procesu teksturowania, poprzez redukcję głębokości wytrawiania dało znaczącą poprawę napięcia Voc oraz Eff. Wykonane badania wskazują, że rezystancja szeregowa Rs stanowi ważny czynnik wpływający na działanie ogniw słonecznych, zbudowanych z czarnego krzemu.
Rocznik
Strony
95--97
Opis fizyczny
Bibliogr. 9 poz., il., tab., wykr.
Twórcy
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
autor
  • Institute of Electrical Engineering, Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Chinese Academy of Sciences, Beijing 100190, P. R. China
Bibliografia
  • [1] H. Sai, H. Fujii, et al., Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (2006), pp. 1191–1194.
  • [2] K. Nishioka, S. Horita, et al., Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle, Solar Energy Materials and Solar Cells, vol. 92, (2008), pp. 919–922.
  • [3] S. Koynov, M. S. Brandt, et al., Metal-induced seeding of macropore arrays in silicon, Advanced Materials, vol. 18, (2006), pp. 633–+.
  • [4] T. K. Sarma, D. Chowdhury, et al., Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent, Chemical Communications, (2002), pp. 1048–1049.
  • [5] K. Tsujino, M. Matsumura, et al., Texturization of multicrystalline silicon wafers by chemical treatment using metallic catalyst, 2003.
  • [6] K. Tsujino, M. Matsumura, et al., Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst, Solar Energy Materials and Solar Cells, vol. 90, (2006), pp. 100–110.
  • [7] S. Koynov, M. S.Btandt, et al., Black multi-crystalline silicon solar cells, PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, vol. 1, (2007), pp. R53–R55.
  • [8] K. Nishioka, T. Sueto, et al., Antireflection structure of silicon solar cells formed by wet process using catalysis of single nano-sized gold or silver particle, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE (2009), pp. 169–171.
  • [9] H.-C. Yuan, V. E.Yost, et al., Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules, Applied Physics Letters, vol. 95, (2009), pp. 123501–123503.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58991d1e-7d8a-4712-b8d3-b833371e9997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.