PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation into using benzohydroxamic acid as a collector for sulfide minerals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mining industry aims to promote responsible chemical use during mineral processing operations to minimize the chemical contamination. Hydroxamic acids, which can form strong chelates with metals, have been shown to have less health and environmental issues when compared to xanthate collectors. In this work, the performance of benzohydroxamic acid (BHA) as a collector for galena, chalcopyrite, and quartz was evaluated. The minerals were conditioned with different concentrations (1.5, 3, and 4.5 kg/t) of collector at pHs 8, 9, and 10. The result showed that the treatment of the mineral surfaces with BHA enhanced the flotation recoveries of the sulfide minerals. High concentrations of benzohydroxamate anion, the protonic dissociation product of BHA, existed at basic pHs, where a chemical reaction between the anion and a metal cation on the mineral surface resulted in the adsorption of the collector onto the mineral surface. The microflotation results showed that the BHA collector was able to successfully recover galena and chalcopyrite. Their flotation recovery was dependent on the conditioning pH. Galena showed a high flotation recovery (up to 86%) at both pH 9 and 10, whereas chalcopyrite became most hydrophobic at pH values of 8 and 9 (up to 88%). None of the BHA concentrations or conditioning pHs was able to enhance quartz recovery beyond 7%. The research results have implications in the application of BHA for the froth flotation of galena and chalcopyrite.
Słowa kluczowe
Rocznik
Strony
art. no. 175662
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
autor
  • Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
autor
  • Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
  • Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
Bibliografia
  • ADIGUZEL, E., YILMAZ, F., EMIRIK, M. OZIL, M., 2017. Synthesis and characterization of two new hydroxamic acids derivatives and their metal complexes. An investigation on the keto/enol, E/Z and hydroxamate/hydroximate forms. Journal of Molecular Structure 1127, 403-412.
  • BULATOVIC, S. M., 2010. Flotation of Oxide Copper and Copper Cobalt Ores. Handbook of Flotation Reagents: Chemistry, Theory and Practice. S. M. Bulatovic. Amsterdam, Elsevier. 19, 47-65.
  • CAO, M., GAO, Y., BU, H. QIU, X., 2019. Study on the mechanism and application of rutile flotation with benzohydroxamic acid. Minerals Engineering 134, 275-280.
  • CAO, Y., SUN, L., GAO, Z., SUN, W. CAO, X., 2020. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector. Minerals Engineering 156, 106523.
  • CITARELLA, A., MOI, D., PINZI, L., BONANNI, D. RASTELLI, G., 2021. Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications. ACS Omega 6(34), 21843-21849.
  • CUI, K., JIN, S. DUAN, N., 2023. Insights into the adsorption mechanism of benzohydroxamic acid in the flotation of rhodochrosite with Pb2+ activation. Powder Technology 427, 118705.
  • ELIZONDO-ÁLVAREZ, M. A., URIBE-SALAS, A. BELLO-TEODORO, S., 2021. Chemical stability of xanthates, dithiophosphinates and hydroxamic acids in aqueous solutions and their environmental implications. Ecotoxicology and Environmental Safety 207, 111509.
  • ELIZONDO-ÁLVAREZ, M. A., URIBE-SALAS, A. NAVA-ALONSO, F., 2020. Flotation studies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4) with hydroxamic acids as collectors. Minerals Engineering 155, 106456.
  • ESPIRITU, E. R. L., DA SILVA, G. R., AZIZI, D., LARACHI, F. WATERS, K. E., 2018. The effect of dissolved mineral species on bastnäsite, monazite and dolomite flotation using benzohydroxamate collector. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539, 319-334.
  • FANG, S., XU, L., WU, H., TIAN, J., LU, Z., SUN, W. HU, Y., 2018. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Minerals Engineering 126, 16-23.
  • GHOSH, K. K., 2003. Acid-base equilibria of hydroxamic acids: Spectroscopic investigation. Indian Journal of Chemistry 42A, 2683-2697.
  • GIBSON, C. E., HANSULD, R., KELEBEK, S. AGHAMIRIAN, M., 2017. Behaviour of ilmenite as a gangue mineral in the benzohydroxamic flotation of a complex pyrochlore-bearing ore. Minerals Engineering 109, 98-108.
  • GIBSON, C. E., KELEBEK, S., AGHAMIRIAN, M. YU, B., 2015. Flotation of pyrochlore from low grade carbonatite gravity tailings with benzohydroxamic acid. Minerals Engineering 71, 97-104.
  • GLORIUS, M., MOLL, H. BERNHARD, G., 2007. Complexation of uranium(VI) with aromatic acids in aqueous solution – a comparison of hydroxamic acids and benzoic acid. Radiochimica Acta 95(3), 151-157.
  • HAN, H.-S., LIU, W.-L., HU, Y.-H., SUN, W. LI, X.-D., 2017. A novel flotation scheme: selective flotation of tungsten minerals from calcium minerals using Pb–BHA complexes in Shizhuyuan. Rare Metals 36(6), 533-540.
  • HASSAN, L. R., BAHRON, H., RAMASAMY, K. TAJUDDIN, A. M., 2019. Synthesis and AND Characterization of Benzohydroxamic Acid and Methylbenzohydroxamic Acid Meta Complexes and Their Cytotoxicty Study. Malaysian Journal of Analytical Sciences 23(2), 263-273.
  • HASSAN, L. R., RAMASAMY, K., LIM, S. M., BAHRON, H. MOHD TAJUDDIN, A., 2018. Synthesis and Characterization of Benzohydroxamic Acid Metal Complexes and Their Cytotoxicity Study. Jurnal Teknologi 80(6), 87-94.
  • HE, J., HAN, H., ZHANG, C., XU, Z., YUAN, D., CHEN, P., SUN, W. HU, Y., 2018. Novel insights into the surface microstructures of lead(II) benzohydroxamic on oxide mineral. Applied Surface Science 458, 405-412.
  • HU, Y., ZHAO, Z., LU, L., ZHU, H., XIONG, W., ZHU, Y., LUO, S., ZHANG, X. YANG, B., 2021. Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite. Minerals 11(4), 410.
  • JORDENS, A., MARION, C., GRAMMATIKOPOULOS, T., HART, B. WATERS, K. E., 2016. Beneficiation of the Nechalacho rare earth deposit: Flotation response using benzohydroxamic acid. Minerals Engineering 99, 158-169.
  • KHAIRY, E. M., SHOUKRY, M. M., KHALIL, M. M. MOHAMED, M. M. A., 1996. Metal complexes of salicylhydroxamic acid: Equilibrium studies and synthesis. Transition Metal Chemistry 21(2), 176-180.
  • KHALIL, M. M., 2000. Complexation Equilibria and Determination of Stability Constants of Binary and Ternary Complexes with Ribonucleotides (AMP, ADP, and ATP) and Salicylhydroxamic Acid as Ligands. Journal of Chemical & Engineering Data 45(1), 70-74.
  • KHALIL, M. M. FAZARY, A. E., 2004. Potentiometric Studies on Binary and Ternary Complexes of Di- and Trivalent Metal Ions Involving Some Hydroxamic Acids, Amino Acids, and Nucleic Acid Components. Monatshefte für Chemie / Chemical Monthly 135(12), 1455-1474.
  • KOZLOV, M. V., KLEYMENOVA, A. A., ROMANOVA, L. I., KONDUKTOROV, K. A., SMIRNOVA, O. A., PRASOLOV, V. S. KOCHETKOV, S. N., 2013. Benzohydroxamic acids as potent and selective anti-HCV agents. Bioorganic & Medicinal Chemistry Letters 23(21), 5936-5940.
  • LEE, J. S., NAGARAJ, D. R. COE, J. E., 1998. Practical aspects of oxide copper recovery with alkyl hydroxamates. Minerals Engineering 11(10), 929-939.
  • LEE, K., ARCHIBALD, D., MCLEAN, J. REUTER, M. A., 2009. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering 22(4), 395-401.
  • LI, Z., RAO, F., SONG, S., URIBE-SALAS, A. LOPEZ-VALDIVIESO, A., 2020. Reexamining the adsorption of octyl hydroxamate on malachite surface: Forms of molecules and anions. Mineral Processing and Extractive Metallurgy Review 41(3), 178-186.
  • LIANG, Y.-T., ZHU, S., WANG, J., AI, C.-B. QIN, W.-Q., 2015. Adsorption and leaching of chalcopyrite by Sulfolobus metallicus YN24 cultured in the distinct energy sources. International Journal of Minerals, Metallurgy, and Materials 22(6), 549-552.
  • LIPCZYNSKA-KOCHANY, E., 1991. Photochemistry of hydroxamic acids and derivatives. Chemical Reviews 91(4), 477-491.
  • LIU, C., MIN, F., LIU, L., CHEN, J. DU, J., 2018. Mechanism of hydrolyzable metal ions effect on the zeta potential of fine quartz particles. Journal of Dispersion Science and Technology 39(2), 298-304.
  • LIU, C., ZHANG, W., SONG, S. LI, H., 2019. Study on the activation mechanism of lead ions in wolframite flotation using benzyl hydroxamic acid as the collector. Minerals Engineering 141, 105859.
  • MARION, C., JORDENS, A., LI, R., RUDOLPH, M. WATERS, K. E., 2017. An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology 183, 258-269.
  • MENG, Q., FENG, Q., SHI, Q. OU, L., 2015. Studies on interaction mechanism of fine wolframite with octyl hydroxamic acid. Minerals Engineering 79, 133-138.
  • MIELCZARSKI, J. A., CASES, J. M., ALNOT, M. EHRHARDT, J. J., 1996. XPS Characterization of Chalcopyrite, Tetrahedrite, and Tennantite Surface Products after Different Conditioning. 1. Aqueous Solution at pH 10. Langmuir 12(10), 2519-2530.
  • MOHAMMADI-JAM, S., WATERS, K. E. GREENWOOD, R. W., 2022. A review of zeta potential measurements using electroacoustics. Advances in Colloid and Interface Science 309, 102778.
  • MOHTASEBI, A., CHOWDHURY, T., HSU, L. H. H., BIESINGER, M. C. KRUSE, P., 2016. Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces. The Journal of Physical Chemistry C 120(51), 29248-29263.
  • NAUMKIN, A. V., KRAUT-VASS, A., GAARENSTROOM, S. W. POWELL, C. J. 2012. NIST X-ray Photoelectron Spectroscopy Database, The Scienta ESCA300 Database Wiley Interscience.
  • OZSVÁTH, A., BÍRÓ, L., NAGY, E. M., BUGLYÓ, P., SANNA, D. FARKAS, E., 2019. Trends and Exceptions in the Interaction of Hydroxamic Acid Derivatives of Common Di- and Tripeptides with Some 3d and 4d Metal Ions in Aqueous Solution. Molecules 24(21), 3941.
  • PAVEZ, O. PERES, A. E. C., 1993. Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamates. Minerals Engineering 6(1), 69-78.
  • PLAPINGER, R. E., 1959. Ultraviolet absorption spectra of some hydroxamic acids and hydroxamic acid derivatives. The Journal of Organic Chemistry 24(6), 802-804.
  • PRADIP FUERSTENAU, D. W., 1983. The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite. Colloids and Surfaces 8(2), 103-119.
  • QIN, W., WANG, X., MA, L., JIAO, F., LIU, R., YANG, C. GAO, K., 2015. Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite. Minerals Engineering 74, 99-104.
  • REN, J., LU, S., SONG, S. NIU, J., 1997. A new collector for rare earth mineral flotation. Minerals Engineering 10(12), 1395-1404.
  • SCHRAML, J., 2000. Derivatives of hydroxamic acids. Applied Organometallic Chemistry 14, 604-610.
  • STEINBERG, G. M. SWIDLER, R., 1965. The Benzohydroxamate Anion. The Journal of Organic Chemistry 30(7), 2362-2365.
  • SUBRAHMANYAM, T. V., SUN, Z., FORSSBERG, K. S. E. FORSLING, W., 1990. Variables in the shear flocculation of galena. Sulphide deposits—their origin and processing. P. M. J. Gray, G. J. Bowyer, J. F. Castle, D. J. Vaughan and N. A. Warner. Dordrecht, Netherlands, Springer, 223-231.
  • SUPURAN, C. T., 2013. Hydroxamates as Carbonic Anhydrase Inhibitors. Hydroxamic Acids: A Unique Family of Chemicals with Multiple Biological Activities. S. P. Gupta. Berlin, Heidelberg, Springer Berlin Heidelberg, 55-69.
  • TARDIO, S., ABEL, M.-L., CARR, R. H. WATTS, J. F., 2019. The interfacial interaction between isocyanate and stainless steel. International Journal of Adhesion and Adhesives 88, 1-10.
  • TIAN, M., GAO, Z., SUN, W., HAN, H., SUN, L. HU, Y., 2018. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. Journal of Colloid and Interface Science 529, 150-160.
  • TIAN, M., HU, Y., SUN, W. LIU, R., 2017. Study on the mechanism and application of a novel collector-complexes in cassiterite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 522, 635-641.
  • Tian, M., Zhang, C., Han, H., Liu, R., Gao, Z., Chen, P., Wang, L., Li, Y., Ji, B., Hu, Y. Sun, W., 2018. Effects of the preassembly of benzohydroxamic acid with Fe (III) ions on its adsorption on cassiterite surface. Minerals Engineering 127, 32-41.
  • VERGOUW, J. M., DIFEO, A., XU, Z. FINCH, J. A., 1998. An agglomeration study of sulphide minerals using zeta-potential and settling rate. Part 1: Pyrite and galena. Minerals Engineering 11(2), 159-169.
  • WANG, D., JIAO, F., QIN, W. WANG, X., 2018. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant. Separation Science and Technology 53(6), 961-972.
  • WANG, J., CHENG, H.-W., ZHAO, H.-B., QIN, W.-Q. QIU, G.-Z., 2016. Flotation behavior and mechanism of rutile with nonyl hydroxamic acid. Rare Metals 35(5), 419-424.
  • WANG, Z., XU, L., WANG, J., WANG, L. XIAO, J., 2017. A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector. Applied Surface Science 426, 1141-1147.
  • WEI, Z., HU, Y., HAN, H. SUN, W., 2020. Configurations of lead(II)–benzohydroxamic acid complexes in colloid and interface: A new perspective. Journal of Colloid and Interface Science 562, 342-351.
  • XU, L., TIAN, J., WU, H., LU, Z., YANG, Y., SUN, W. HU, Y., 2017. Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector. Applied Surface Science 425, 796-802.
  • YANG, S., FENG, Q., QUI, X., GAO, Y. XIE, Z., 2014. Relationship between flotation and Fe/Mn ratio of wolframite with benzohydroxamic acid and sodium oleate as collectors. Physicochemical Problems of Mineral Processing 50(2), 747-758.
  • YAO, W., LI, M., CUI, R., JIANG, X., JIANG, H., DENG, X., LI, Y. ZHOU, S., 2018. Flotation Behavior and Mechanism of Anglesite with Salicyl Hydroxamic Acid as Collector. The Journal of The Minerals, Metals & Materials Society (JOM) 70(12), 2813-2818.
  • YAO, X., YU, X., ZENG, Y., MAO, L., XIE, H., LIU, S., HE, G., HUANG, Z., WANG, H. LIU, Z., 2022. Behavior and Mechanism of a Novel Hydrophobic Collector in the Flotation of Bastnaesite. Minerals 12(7), 817.
  • ZHANG, C., ZHOU, Q., AN, B., YUE, T., CHEN, S., LIU, M., HE, J., ZHU, J., CHEN, D., HU, B. SUN, W., 2021. Flotation Behavior and Synergistic Mechanism of Benzohydroxamic Acid and Sodium Butyl-Xanthate as Combined Collectors for Malachite Beneficiation. Minerals 11(1), 59.
  • ZHANG, J., ZHANG, X.-G., WEI, X.-X., CHENG, S.-Y., HU, X.-Q., LUO, Y.-C. XU, P.-F., 2022. Selective depression of galena by sodium polyaspartate in chalcopyrite flotation. Minerals Engineering 180, 107464.
  • ZHANG, W., HONAKER, R. Q. GROPPO, J. G., 2017. Flotation of monazite in the presence of calcite part I: Calcium ion effects on the adsorption of hydroxamic acid. Minerals Engineering 100, 40-48.
  • ZHOU, F., YAN, C., WANG, H., SUN, Q., WANG, Q. ALSHAMERI, A., 2015. Flotation behavior of four C18 hydroxamic acids as collectors of rhodochrosite. Minerals Engineering 78, 15-20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5894ce8a-cab1-414a-a39c-8c009781cabb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.