PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element-finite volume simulation of underwater explosion and its impact on a reinforced steel plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Marine structures are one of the most important industrial and military equipment in each country that should be protected against external forces. The main aim of this paper is a detailed investigation of the underwater explosion (UNDEX) and its effects on marine structures. For this purpose, the UNDEX structure was studied qualitatively and quantitatively using numerical methods. Then, the effects of blast waves on a marine structure reinforced by perpendicular blades were investigated. Finite element and finite volume schemes were used for discretization of the governing equations in the solid and fluid media, respectively. Also, for fluid-structure interaction (FSI), results of fluid and solid media were mapped to each other using the two-way FSI coupling methods. A comparison of numerical results with the empirical formula revealed that the trend of pressure-time curves was reasonable, approving the validity of the numerical method. Moreover, the numerical results indicated that detonation of 1 kg trinitrotoluene (TNT) creates a pressure wave with maximum amplitude of 24 MPa at a distance of 2 m. Also, it was found that the reinforcement blades can be used to improve the resistance of structures against explosive charges, which also results in the reduction of structures deformation.
Rocznik
Strony
5--30
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Bibliografia
  • [1] B.V. Zamyshlyaev and Y.S. Yakovlev. Dynamic loads in underwater explosion, Naval Intelligence Support Center Washington, D.C, 1973.
  • [2] N.A. Fleck and V.S. Deshpande. The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 71(3):386–401, 2004. doi: 10.1115/1.1629109.
  • [3] X. Qiu, V.S. Deshpande, and N.A. Fleck. Dynamic response of a clamped circular sandwich plate subject to shock loading. Journal of Applied Mechanics, 71(5):637–645, 2004. doi: 10.1115/1.1778416.
  • [4] L. Ren, H. Ma, Z. Shen, and Y. Wang. Blast response of water-backed metallic sandwich panels subject to underwater explosion – Experimental and numerical investigations. Composite Structures, 209:79–92, 2019. doi: 10.1016/j.compstruct.2018.10.082.
  • [5] W. Johnson, A. Poynton, H. Singh, and F.W. Travis. Experiments in the underwater explosive stretch forming of clamped circular blanks. International Journal of Mechanical Sciences, 8(4):237–270, 1966. doi: 10.1016/0020-7403(66)90027-0.
  • [6] W. Cao, Z. He, and W. Chen. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method. Shock Waves, 24(6):619–624, 2014. doi: 10.1007/s00193-014-0527-2.
  • [7] K. Liu, Z. Wang, W. Tang, Y. Zhang, and G. Wang. Experimental and numerical analysis of laterally impacted stiffened plates considering the effect of strain rate. Ocean Engineering, 99:44–54, 2015. doi: 10.1016/j.oceaneng.2015.03.007.
  • [8] J.M. Gordo, C. Guedes Soares, and D. Faulkner. Approximate assessment of the ultimate longitudinal strength of the hull girder. Journal of Ship Research, 40(1):60–69, 1996.
  • [9] Z. Zhang, L. Wang, and V.V. Silberschmidt. Damage response of steel plate to underwater explosion: Effect of shaped charge liner. International Journal of Impact Engineering, 103:38– 49, 2017. doi: 10.1016/j.ijimpeng.2017.01.008.
  • [10] Z. Jin, C. Yin, Y. Chen, and H. Hua. Numerical study on the interaction between underwater explosion bubble and a moveable plate with basic characteristics of a sandwich structure. Ocean Engineering, 164:508–520, 2018. doi: 10.1016/j.oceaneng.2018.07.001.
  • [11] C. Xin, G. Xu., and K. Liu. Numerical simulation of underwater explosion loads. Transactions of Tianjin University, 14(suppl.1):519–522, 2008. doi: 10.1007/s12209-008-0089-4.
  • [12] E. Gauch, J. LeBlanc, and A. Shukla. Near field underwater explosion response of polyurea coated composite cylinders. Composite Structures, 202:836–852, 2018. doi: 10.1016/j.compstruct.2018.04.048.
  • [13] F. Vannucchi de Camargo. Survey on experimental and numerical approaches to model underwater explosions. Journal of Marine Science and Engineering, 7(1):1–18, 2019. doi: 10.3390/jmse7010015.
  • [14] B.G. Prusty and S.K. Satsangi. Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Engineering, 28(6):621–638, 2001. doi: 10.1016/S0029- 8018(00)00021-4.
  • [15] N.K. Gupta, P. Kumar, and S. Hegde. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion – a numerical study. International Journal of Mechanical Sciences, 52(5):733–744, 2010. doi: 10.1016/j.ijmecsci.2010.01.005.
  • [16] Z.H. Ma, D.M. Causon, L. Qian, H.B. Gu, C.G. Mingham, and P. Martinez Ferrer. A GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impact problems. Computers & Fluids, 120:1–23, 2015. doi: 10.1016/j.compfluid.2015.07.010.
  • [17] G. Wang, Y. Wang, W. Lu, W. Zhou, M. Chen, and P. Yan. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion. Applied Ocean Research, 59:1–9, 2016. doi: 10.1016/j.apor.2016.05.011.
  • [18] S. Li, R. Han, A.M. Zhang, and Q.X. Wang. Analysis of pressure field generated by a collapsing bubble. Ocean Engineering, 117:22–38, 2016. doi: 10.1016/j.oceaneng.2016.03.016.
  • [19] G. Beer. Finite element, boundary element and coupled analysis of unbounded problems in elastostatics. International Journal for Numerical Methods in Engineering, 19(4):567–580, 1983. doi: 10.1002/nme.1620190408.
  • [20] S.W. Gong and B.C. Khoo. Transient response of stiffened composite submersible hull to underwater explosion bubble. Composite Structures, 122:229–238, 2015. doi: 10.1016/j.compstruct.2014.10.026.
  • [21] T. De Vuyst, K. Kong, N. Djordjevic, R. Vignjevic, J.C. Campbell, and K. Hughes. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones. Journal of Physics: Conference Series, 734:032074, 2016. doi: 10.1088/1742-6596/734/3/032074.
  • [22] F.R. Ming, A.M. Zhang, Y.Z. Xue, and S.P. Wang. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Engineering, 117:359–382, 2016. doi: 10.1016/j.oceaneng.2016.03.040.
  • [23] O. Adibi, A. Azadi, B. Farhanieh, and H. Afshin. A parametric study on the effects of surface explosions on buried high pressure gas pipelines. Engineering Solid Mechanics, 5(4):225–244, 2017. doi: 10.5267/j.esm.2017.9.003.
  • [24] C. Hesch and P. Betsch. Continuum mechanical considerations for rigid bodies and fluidstructure interaction problems. Archive of Mechanical Engineering, 60(1):95–108, 2013. doi: 10.2478/meceng-2013-0006.
  • [25] G. Wang and S. Zhang. Damage prediction of concrete gravity dams subjected to underwater explosion shock loading. Engineering Failure Analysis, 39:72–91, 2014. doi: 10.1016/j.engfailanal.2014.01.018.
  • [26] H. Linsbauer. Hazard potential of zones of weakness in gravity dams under impact loading conditions. Frontiers of Architecture and Civil Engineering in China, 5(1):90–97, 2011. doi: 10.1007/s11709-010-0008-3.
  • [27] S. Zhang, G. Wang, C. Wang, B. Pang, and C. Du. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion. Engineering Failure Analysis, 36:49–64, 2014. doi: 10.1016/j.engfailanal.2013.10.001.
  • [28] R. Rajendran. Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion. Materials & Design, 30(4):1000–1007, 2009. doi: 10.1016/j.matdes.2008.06.054.
  • [29] A.M. Zhang, L.Y. Zeng, X.D. Cheng, S.P. Wang, and Y. Chen. The evaluation method of total damage to ship in underwater explosion. Applied Ocean Research, 33(4):240–251, 2011. doi: 10.1016/j.apor.2011.06.002.
  • [30] E. Fathallah, H. Qi, L.Tong, and M. Helal. Numerical simulation and response of stiffened plates subjected to noncontact underwater explosion. Advances in Materials Science and Engineering, 2014:752586, 2014. doi: 10.1155/2014/752586.
  • [31] J. Qiankun and D. Gangyi. A finite element analysis of ship sections subjected to underwater explosion. International Journal of Impact Engineering, 38(7):558–566, 2011. doi: 10.1016/j.ijimpeng.2010.11.005.
  • [32] G. Wang, S. Zhang, M. Yu, H. Li, and Y. Kong. Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries. Applied Ocean Research, 46:40–53, 2014. doi: 10.1016/j.apor.2014.02.003.
  • [33] J. LeBlanc and A. Shukla. The effects of polyurea coatings on the underwater explosive response of composite plates. In S. Gopalakrishnan and Y. Rajapakse, editors, Blast Mitigation Strategies in Marine Composite and Sandwich Structures, pages 53–72, Springer, 2018. doi: 10.1007/978- 981-10-7170-6_3.
  • [34] H. Huang, Q.J. Jiao, J.X. Nie, and J.F. Qin. Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN. Journal of Energetic Materials, 29(4):292–325, 2011. doi: 10.1080/07370652.2010.527898.
  • [35] A. Schiffer. The response of submerged structures to underwater blast. Ph.D. Thesis, Oxford University, UK, 2013.
  • [36] R.D. Ambrosini and B.M. Luccioni. Craters produced by explosions on the soil surface. Journal of Applied Mechanics, 73(6):890–900, 2006. doi: 10.1115/1.2173283.
  • [37] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure interaction – a review. Communications in Computational Physics, 12(2):337–377, 2012. doi: 10.4208/cicp.291210.290411s.
  • [38] H.-J. Bungartz, M. Mehl, and M. Schäfer. Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer-Verlag Berlin Heidelberg, 2010.
  • [39] A. Pazouki, R. Serban, and D. Negrut. A high performance computing approach to the simulation of fluid-solid interaction problems with rigid and flexible components. Archive of Mechanical Engineering, 61(2):227–251, 2014. doi: 10.2478/meceng-2014-0014.
  • [40] N.K. Birnbaum, J.N. Francis, and B.I. Gerber. Coupled techniques for the simulation of fluid-structure and impact problems. Computer Assisted Mechanics and Engineering Sciences, 6(3/4):295–311, 1999.
  • [41] P. Sherkar, A.S. Whittaker, and A.J. Aref. Modeling the effects of detonations of high explosives to inform blast-resistant design. Technical Report MCEER-10-0009, 2010.
  • [42] Y.A. Çengel and M.A. Boles. Thermodynamics: An Engineering Approach. McGraw-Hill, 2002.
  • [43] J.C. Jo. Fluid-structure interactions. In Y.W. Kwon and P-S. Lam, editors, Pressure Vessels and Piping Systems. Encyclopedia of Life Support Systems (EOLSS), 2004.
  • [44] M.L. Wilkins. Use of artificial viscosity in multidimensional fluid dynamic calculations. Journal of Computational Physics, 36(3):281–303, 1980. doi: 10.1016/0021-9991(80)90161-8.
  • [45] D. Kosloff and G.A. Frazier. Treatment of hourglass patterns in low order finite element codes. International Journal for Numerical and Analytical Methods in Geomechanics, 2(1):57–72, 1978. doi: 10.1002/nag.1610020105.
  • [46] O. Adibi, B. Farhanieh, and H. Afshin. Numerical study of heat and mass transfer in underexpanded sonic free jet. International Journal of Heat and Technology, 35(4):959–968, 2017. doi: 10.18280/ijht.350432.
  • [47] L.H. Bakken and P.D. Anderson. The complete equation of state handbook. Technical Report SCL-TM-67-118, Sandia Corporation, Livermore, USA, 1967.
  • [48] G. Baudin and R. Serradeill. Review of Jones-Wilkins-Lee equation of state. EPJ Web of Conferences, 10:00021, 2010. doi: 10.1051/epjconf/20101000021.
  • [49] A. Dacko and J. Toczyski. Vulnerability analysis of aircraft fuselage subjected to internal explosion. Archive of Mechanical Engineering, 58(4):393–406, 2011. doi: 10.2478/v10180-011-0024-4.
  • [50] A. Morka, P. Kedzierski, and R. Gieleta. Selected aspects of numerical analysis of layered flexible structures subjected to impact of soft core projectile. Archive of Mechanical Engineering, 62(1):73–83, 2015. doi: 10.1515/meceng-2015-0005.
  • [51] D.J. Steinberg, S.G. Cochran, and M.W. Guinan. A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics, 51(3):1498–1504, 1980. doi: 10.1063/1.327799.
  • [52] G.R. Johnson and W.H. Cook. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proceedings of 7th International Symposium on Ballistics, pages 541–547, Hague, The Netherlands, 1983.
  • [53] G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1):31–48, 1985. doi: 10.1016/0013-7944(85)90052-9.
  • [54] O. Björklund. Modelling of failure. M.Sc. Thesis, Linköping University, Linköping, Sweden, 2008.
  • [55] L. Mazurkiewicz, J. Malachowski, and P. Baranowski. Blast loading influence on load carrying capacity of I-column. Engineering Structures, 104:107–115, 2015. doi: 10.1016/j.engstruct.2015.09.025.
  • [56] P. Baranowski, J. Malachowski, and L. Mazurkiewicz. Numerical and experimental testing of vehicle tyre under impulse loading conditions. International Journal of Mechanical Sciences, 106:346–356, 2016. doi: 10.1016/j.ijmecsci.2015.12.028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-588b19bf-c972-4ad3-bb98-b42af0a607d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.