PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metahydrophobicity and orthohydrophilicity tested in flotation of NaCl, KCl, KPF6 in their saturated aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation tests of different size fractions of NaCl, KCl and KPF6 in their saturated aqueous solutions were performed in a 36 cm in height monobubble Hallimond tube. Also contact angle tests by means of sessile drops of saturated salt solution put on pressed discs of salts were carried out. The obtained sessile drop contact angles were equal to zero, pointing to a complete hydrophilicity (orthophilicity) of the investigated salts. In the case of NaCl and KCl, their orthohydrophilicity was confirmed by flotation tests and flotometric considerations because the entrainment factors, which take into account the maximum size of entrained particles and density of the salt as well as it solution, were similar to those of quartz and magnetite and equal to 0.11 mm. The entrainment factor for KPF6  was equal to 0.18 mm and was greater than that of NaCl and KCl indicating certain natural flotation of this salt caused by some flotational hydrophobicity called in this paper metahydrophobicity. The metahydrophobicity of KPF6   was confirmed by flotation results. In the case of KPF6 the maximum yields of the same size particles were the highest, even though the density of this salt was greater than that of NaCl and KCl. Also, the first order kinetic constants were always the greatest for KPF6. Further flotometeric calculation based on the balance of forces involved in flotation indicated that the estimated contact angle of KPF6 was about 8 º assuming static flotation, and 7 º for dynamic flotation, while for NaCl and KCl was below 5 º . It means that during flotation test orthohydrophilic NaCl and KCl are only entrained while for metahydrophobic KPF6 there is mostly entrainment and some flotation.
Słowa kluczowe
Rocznik
Strony
1141--1147
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • ADAMSON, A.W., 1982. Physical chemistry of surfaces, IV ed., Wiley, New York.
  • CRC, 1986/87. Handbook of chemistry and physics, 67th edition, CRC Press, Boca Raton, USA.
  • DRELICH, J., CHIBOWSKI, E., MENG, D.D., TERPILOWSKI, K., 2011. Hydrophilic and superhydrophilic surfaces and materials, Soft Matter 7(21), 9804-9828.
  • DRZYMALA, J., 1994a. Characterization of materials by Hallimond tube flotation. Part 2: maximum size of floating particles and contact angle, Int. J. Miner. Process., 42, 153-167 and erratum, Int. J. Miner. Process., 43, 1995, 135.
  • DRZYMALA, J., 1994b. Hydrophobicity and collectorless flotation of inorganic materials, Advances in Colloid and Interface Sci., 50, 143-186.
  • DRZYMALA, J., 1996. The importance of contact angle equal to 90 degrees in interfacial processes, Proc. International Conference on Analysis and Utilization of Oily Wastes, AUZO’96, Gdansk, Poland, 393-396.
  • DRZYMALA, J., 2007. Mineral Processing. Foundations of theory and practice of minerallurgy, Oficyna Wyd. PWr., Wroclaw, 2007, 507 pages, http://www.dbc.wroc.pl/dlibra/docmetadata? id=2070&from=publication.
  • DUBIEL, M., RATAJCZAK T., 2019. Investigation of flotation of salts in their saturated solutions, Mineral Engineering Conference MEC 2019, Poland.
  • GAJEWSKA, I., PIETRAS, S., RUDZINSKA, J., SCHELLENBERG, A., 1974. Poradnik fizykochemiczny, WNT Warszawa, Wyd. II.
  • KONOPACKA, Z., 2005. Mechanical flotation, Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland (in Polish).
  • KOWALCZUK, P.B., OKTAY, S., DRZYMALA J., 2011. Maximum size of floating particles in different flotation cells, Minerals Engineering, 24 (766-771).
  • LI, Ch., SOMASUNDARAN, P., 1993. Role of electrical double layer forces and hydrophobicity in coal flotation in NaCl solutions. Energy & Fuels, 7, 244-248.
  • LIPNIARSKI, M., RATAJCZAK, T., DRZYMALA, J., 2015. Weryfikacja hipotez o roli soli we flotacji na przykladzie wegla \ kamiennego w wodnych roztworach NaCl i KPF6, III Polski Kongres Gorniczy, Mineralurgia i wykorzystanie surowcow mineralnych (WGGG PWr, Wroclaw), 35–9.
  • LYKLEMA, J., 1993. Fundamentals of interface and colloid science. Vol. 1, Fundamentals, Academic Press, London.
  • LYKLEMA, J., 1995. Fundamentals of interface and colloid science. Vol. 2. Solid-liquid interfaces, Academic Press, London, p. 3.178.
  • MILLER, J. D., YALAMANCHILI, M. R., and KELLAR, J. J., 1992. Surface charge of alkali halide particles as determined by laser-Doppler electrophoresis, Langmuir 8 (1992) 1464-69.
  • ONDA, T., SHIBUICHI, S., SATOH N., TSUJII, K. 1996. Super-water repellent fractal surfaces, Langmuir 12(9), 2125-2127.
  • OZDEMIR, O., DU, H., KARAKASHEV, S.I., NGUYEN, A.V., CELIK, M.S., MILLER, J.D., 2011. Understanding the role of ion interactions in soluble salt flotation with alkylammonium and alkylsulfate collectors, Advances in Colloid and Interface Science 2011;163(1):1-22.
  • OZDEMIR, O., KARAGUZEL, C., NGUYEN, A.V., CELIK, M.S., MILLER, J.D., 2009. Contact angle and buble attachment studies in the flotation of trona and other soluble carbonate salts. Minerals Engineering, 22(2),168-175.
  • QUINN, J.J., SOVECHLES, J.M., FINCH, J.A., WATERS, K.E., 2014. Critical coalescence concentration of inorganic salt solutions, Minerals Engineering 58, 1-6.
  • RATAJCZAK, T., DRZYMALA, J., 2003. Salt flotation, Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland (in Polish).
  • SCHELUDKO, A., TOSHEV, B.V., BOJADJIEV D.T., 1976. Attachment of particles to a liquid surface (capillary theory of flotation), Faraday Trans. I. 12 pp 2815-2828.
  • SHIRTCLIFFE, N.J., MCHALE, G., ATHERTON, S., NEWTON, M.I., 2010. An introduction to superhydrophobicity, Advances in Colloid and Interface Science, Volume 161, Issues 1–2, 15 December 2010, p. 124-138.
  • TADANAGA, K., MORINAGA, J., MATSUDA, A., MINAMI, T., 2000. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method, Chemistry of Materials, 12(3), 590-592.
  • TOY, A.D.F., 1973. The chemistry of phosphorous, Pergamon texts in inorganic chemistry, V. 3., Pergamon Press, Oxford, p. 537.
  • VOGLER, E.A., 1998. Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science, 74, 69-117.
  • WEISSENBORN, P.K., PUGH, R.J., 1996. Surface tension of aqueous solutions of electrolytes: relation with ion hydration, oxygen solubility, and bubble coalescence, J. Coll. Interface Sci., 184, 550-563.
  • ZUNIGA, H.G., 1935. Flotation recovery is an exponential function of its rate. Boln. Soc. Nac. Min., Santiago, Chile, 47, 83-86.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-588943dc-2f09-478d-a1c9-b3366b60c175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.