Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the results of mechanical strength tests of thin conductive Ag and Au layers created on Cordura composite substrate using the thermal vapor deposition method are presented. The resistance of the conductive layers to the bending and tensile stresses was tested and changing the surface resistance of the test structures was accepted as a criterion. The layers created on unmodified and plasma-treated surfaces have been examined. As a result of the surface modification, the electrical and mechanical properties of the thin Ag and Au metal structures have been improved. The results of measurements of surface resistance changes during strength tests and SEM microscopic studies of stressed samples indicate the high mechanical strength of the electroconductive layers deposited on Cordura, which may be the basis for the application of such technology in textronics applications.
Czasopismo
Rocznik
Tom
Strony
229--237
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Institute of Security Technologies „MORATEX”, M. Skłodowskiej-Curie 3, 90-965 Łódź
autor
- Lodz Technical University, Institute of Electrical Engineering Systems, Lodz, Poland
autor
- Lodz Technical University, Institute of Electrical Engineering Systems, Lodz, Poland
autor
- Lodz Technical University, Institute of Electrical Engineering Systems, Lodz, Poland
Bibliografia
- [1] Nowak I., Wpływ technologii wytwarzania na parametry anten tekstylnych Praca doktorska Politechnika Łódzka Łódź 2015.
- [2] Januszkiewicz Ł., Hausman S., Kacprzak T., Michalak M., Krucińska I., Bilska J.: Textile antenna for personal radio communications system - Materials and technology, Fibres and Textiles in Eastern Europe, Volume 95, Issue 6, 2012, Pages 129-133.
- [3] Leśnikowski J.: Textile transmission lines in the modern textronic clothes, Fibres and Textiles in Eastern Europe, Volume 89, Issue 6, 2011, Pages 89-93.
- [4] Yamashita T., Takamatsu S., Miyake K., Itoh T.: Fabrication and evaluation of a conductive polymer coated elastomer contact structure for woven electronic textile, Sensors and Actuators, A: Physical, Volume 195, 1 June 2013, Pages 213-218.
- [5] Kołaciński Z., Szymański Ł., Raniszewski G., Wiak S. Plasma synthesis of carbon nanotubes for electrical and electronic engineering, Przegląd Elektrotechniczny (Electrical Review) 2012, vol. 88 no 10b, pp. 149-152.
- [6] Woltornist S.J., Alamer F.A., McDannald A., Jain M., Sotzing G.A., Adamson D.H.: Preparation of conductive graphene/graphite infused fabrics using an interface trapping method, Carbon, Volume 81, Issue 1, 2015, Pages 38-42.
- [7] Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.-M.: Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications, Advanced Materials, Volume 26, Issue 31, August 2014, pp. 5310-5336.
- [8] Schwarz A., Hakuzimana J., Westbroek P., De Mey G, Priniotakis G., Nyokong T., Van Langenhove L. A study on the morphology of thin copper films on para-aramid yarns and their influence on the yarn’s electro-conductive and mechanical properties Textile Research Journal 82(15) 1587-1596.
- [9] Zhu S., So J.-H., Mays R., Desai S., Barnes W.R., Pourdeyhimi B., Dickey M.D.: Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core, Advanced Functional Materials, Volume 23, Issue 18, 13 May 2013, Pages 2308-2314.
- [10] Hecht, D.S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.
- [11] Lebioda, M., Pawlak, R.: Influence of cryogenic temperatures on electrical properties of structures patterned by a laser in ITO/Ag/ITO layers, Physica Status Solidi (A) Applications and Materials Science, Volume 213, Issue 5, 1 May 2016, Pages 1150-1156.
- [12] Park, S.; Vosguerichian, M.; Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727-1752.
- [13] Yang, J.; Wei, D.; Tang, L.; Song, X.; Luo, W.; Chu, J. et al. Wearable temperature sensor based on graphene nanowalls. RSC Adv. 2015, 5, 25609-25615.
- [14] Pawlak, R., Lebioda, M., Rymaszewski, J., Szymanski, W., Kolodziejczyk, L., Kula, P.: A fully transparent flexible sensor for cryogenic temperatures based on high strength metallurgical graphene, Sensors (Switzerland), Volume 17, Issue 1, 1 January 2017.
- [15] Culler G.D.: U.S. Patent 5, 955,175, 1997.
- [16] Snouqiang J., Newton E., Marcus Yuen C.-W., Kan C.- W.: Application of chemical silver plating on polyester and cotton blended fabric, Textile Research Journal, Volume 77, Issue 2, February 2007, Pages 85-91.
- [17] Ziaja J., Koprowska J., Janukiewicz J.: Using plasma metallisation for manufacture of textile screens against electromagnetic fields, Fibres and Textiles in Eastern Europe, Volume 16, Issue 5, 2008, Pages 64-66.
- [18] Cui H.-W., Suganuma K., Uchida H.: Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method, Nano Research, Volume 8, Issue 5, 18 May 2015, Pages 1604-1614.
- [19] Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H.D., Choi, J.W., Han, S.M., Cui, Y.: Stretchable, porous, and conductive energy textiles, Nano Letters, Volume 10, Issue 2, 10 February 2010, Pages 708-714.
- [20] Stempien Z., Rybicki E., Rybicki T., Lesnikowski J., Inkjetprinting deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications, Sensors and Actuators B: Chemical, Volume 224, 2016, Pages 714-725.
- [21] Stempien Z., Rybicki E., Rybicki T., Kozanecki M., Reactive inkjet printing of PEDOT electroconductive layers on textile surfaces, Synthetic Metals, Volume 217, 2016, Pages 276-287.
- [22] Stempien Z., Rybicki E., Patykowska A., Rybicki T., Szynkowska M.I., Shape-programmed inkjet-printed silver electro-conductive layers on textile surfaces, Journal of Industrial Textiles, first published January 25, 2017, DOI: 10.1177/1528083717690610.
- [23] Korzeniewska E., Jakubas A., Measurement of surface resistance of thin layers of different shapes produced on flexible substrates, in Polish Przegląd Elektrotechniczny (Electrical Review) 2014 vol.90, no. 12, Pages 233-236.
- [24] Lacour S.P., Wagner S., Huang Z., Suo Z.: Stretchable gold conductors on elastomeric substrates, Applied Physics Letters, Volume 82, Issue 15, 14 April 2003, Pages 2404- 2406.
- [25] Mattmann C., Clemens F., Tröster G.: Sensor for measuring strain in textile, Sensors, Volume 8, Issue 6, June 2008, pp. 3719-3732.
- [26] Korzeniewska E., Duraj A., Krawczyk A. Identyfication of sensor dysfunctions of organism by e-fiber monitoring, in Polish Przegląd Elektrotechniczny (Electrical Review) 2013 vol. 89, No.12, pp. 123-127.
- [27] Korzeniewska E., Duraj A., Koneczny C,,Krawczyk A., Thin film electrodes as elements of telemedicine systems. Przegląd Elektrotechniczny (Electrical Review) 2015; vol. 91, no 1, pp. 162-165.
- [28] Amjadi M., Kyung K.-U., Park I., Sitti M.: Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review, Advanced Functional Materials, Volume 26, Issue 11, 15 March 2016, Pages 1678-1698.
- [29] Mazzoldi A., De Rossi D., Lorussi F., Scilingo E.P., Paradiso R.: Smart textiles for wearable motion capture systems, Autex Research Journal, Volume 2, Issue 4, December 2002, Pages 199-203.
- [30] Yamada, T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D.N., Hata K.: A stretchable carbon nanotube strain sensor for human-motion detection, Nature Nanotechnology, Volume 6, Issue 5, May 2011, Pages 296-301.
- [31] Stempien Z., Pawlak R., Korzeniewska E.: Thin conductive structures on coated textiles, 2016 Selected Issues of Electrical Engineering and Electronics, WZEE 2016, 27 December 2016, Article number 7800248.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5883c327-c603-456c-bf70-afa28f576aca