PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd nanododatków stosowanych w warstwach asfaltowych nawierzchni drogowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Overviwe of the nanoadditives used in the asphaltic layers of the road pavements
Języki publikacji
PL
Abstrakty
PL
Jednym z kierunków rozwoju technologii materiałowych jest nanotechnologia rozumiana jako dziedzina zajmująca się zastosowaniem nanododatków do wytwarzania nowych materiałów oraz ich wpływem na parametry modyfikowanych materiałów. W ostatnich latach nanotechnologia wkracza do technologii modyfikacji asfaltów stosowanych do wykonania nawierzchni drogowych. W artykule przedstawiono stosowane obecnie w budownictwie drogowym nanododatki oraz ich właściwości.
EN
One of the direction in the development of the material technology is nanotechnology, understood as using nanoadditives to create new materials and the impact of the additives on the properties of modified materials. In recent years nanotechnology is increasingly used in the modification of the bitumen used in the asphalt pavements. The article presents presently used nanoadditives and their properties.
Czasopismo
Rocznik
Tom
Strony
7--13
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Czarnecki L.: Nanotechnologia w budownictwie. Przegląd Budowlany, 1, 2011, 40–53
  • [2] Czarnecki L.: Sustainable Concrete; Is Nanotechnology the Future of Concrete Polymer Composites?. Advanced Materials Research, 687, 2013, 3–11
  • [3] Abdullah M. E., Zamhari K. A., Buhari R., Kamaruddin N. H. M., Nayan N., Hainin M. R., Hassan N. A., Jaya R. P., Yusoff N. I. M.: A review on the exploration of nanomaterials application in pavement engineering. Jurnal Teknologi, 73, 4, 2015, 69–76
  • [4] Kozubowski J.: Perspektywy nanotechnologii. Wiedza i Życie, 10, 1998,
  • [5] Zhu W., Bartos P. J. M., Porro A.: Application of nanotechnology in construction. Materials and Structures, 37, 9, 2004, 649–658
  • [6] Sobolev K., Ferrada Gutiérrez M.: How Nanotechnology Can Change Construction Materials. American Ceramic Society Bulletin, 84, 10, 2005, 14–17
  • [7] Nurulain C. M., Ramadhansyah P. J., Norhidayah A. H.: A Review of Advance Nanotechnology against Pavement Deterioration. Advanced Materials Research, 1113, 2015, 9–12
  • [8] Singh A., Sangita, Singh A.: Overview of nanotechnology in road engineering. Journal of Nano- and Electronic Physics, 7, 2, 2015, 1–6
  • [9] Sumesh M., Alengaram U. J., Jumaat M. Z., Mo K. H., Alnahhal M. F.: Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review. Construction and Building Materials, 148, 2017, 62–84
  • [10] Heinrich P.: Nanotechnologia w budownictwie drogowym. Kongres Innowacji Infrastrukturalnych, 2011
  • [11] Sybilski D., Wistuba M. P., Bankowski W., Buchler S., Heinrich P.: Effects of a chemically reactive silane additive on binderaggregate interaction. ASFALTOVE VOZOVKY 2015 / ASPHALT PAVEMENTS 2015, 2015
  • [12] Li R., Xiao F., Amirkhanian S., You Z., Huang J.: Developments of nano materials and technologies on asphalt materials – A review. Construction and Building Materials, 143, 2017, 633–648
  • [13] Shi X., Cai L., Xu W., Fan J., Wang X.: Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. Construction and Building Materials, 161, 2018, 705–714
  • [14] Enieb M., Diab A.: Characteristics of asphalt binder and mixture containing nanosilica. International Journal of Pavement Research and Technology, 10, 2, 2017, 148–157
  • [15] Saltan M., Terzi S., Karahancer S.: Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, 2017, 976–984
  • [16] Han L., Zheng M., Li J., Li Y., Zhu Y., Ma Q.: Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt. Construction and Building Materials, 157, 2017, 277–291
  • [17] Sadeghnejad M., Shafabakhsh G.: Use of Nano SiO 2 and Nano TiO 2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Construction and Building Materials, 157, 2017, 965–974
  • [18] Tanzadeh J., Shahrezagamasaei R.: Laboratory Assessment of Hybrid Fiber and Nano-silica on Reinforced Porous Asphalt Mixtures. Construction and Building Materials, 144, 2017, 260–270
  • [19] Amin G. M., Esmail A.: Application of nano silica to improve selfhealing of asphalt mixes. Journal of Central South University, 24, 5, 2017, 1019–1026
  • [20] Yusoff N. I. M., Breem A. A. S., Alattug H. N. M., Hamim A., Ahmad J.: The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Construction and Building Materials, 72, 2014, 139–147
  • [21] Shafabakhsh G. H., Ani O. J.: Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 98, 2015, 692–702
  • [22] Granqvist C. G., Azens A., Smulko J., Kish L. B.: Oxide-based electrochromics for energy efficient buildings: materials, technologies technologies, testing, and perspectives. Journal of Physics: Conference Series, 93, 2007, 012021
  • [23] Klein M., Szkoda M., Sawczak M., Cenian A., Lisowska-Oleksiak A., Siuzdak K.: Flexible dye-sensitized solar cells based on Ti/TiO 2 nanotubes photoanode and Pt-free and TCO-free counter electrode system. Solid State Ionics, 302, 2017, 192–196
  • [24] Hashimoto K., Irie H., Fujishima A.: TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44, 12, 2005, 8269–8285
  • [25] Shafabakhsh G., Mirabdolazimi S. M., Sadeghnejad M.: Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures. Construction and Building Materials, 54, 2014, 566–571
  • [26] Sabura Begum P. M., Mohammed Yusuff K. K., Joseph R.: Preparation and Use of Nano Zinc Oxide in Neoprene Rubber. International Journal of Polymeric Materials, 57, 12, 2008, 1083–1094
  • [27] Mishra P. K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B.: Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 22, 12, 2017, 1825–1834
  • [28] Hamedi G. H., Nejad F. M., Oveisi K.: Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Materials and Structures/Materiaux et Constructions, 49, 4, 2016, 1165–1174
  • [29] Zhang H., Gao Y., Guo G., Zhao B., Yu J.: Effects of ZnO particle size on properties of asphalt and asphalt mixture. Construction and Building Materials, 159, 2018, 578–586
  • [30] Kordi Z., Shafabakhsh G.: Evaluating mechanical properties of stone mastic asphalt modified with Nano Fe2O3. Construction and Building Materials, 134, 2017, 530–539
  • [31] Chelovian A., Shafabakhsh G.: Laboratory evaluation of Nano Al2O3effect on dynamic performance of stone mastic asphalt. International Journal of Pavement Research and Technology, 10, 2, 2017, 131–138
  • [32] Khodary F., El-sadek M. S., El-Sheshtawy H. S.: Mechanical Properties of Modified Asphalt Concrete Mixtures Using CA(OH)2 Nanoparticles. International Journal of Civil Engineering and Technology, 5, 5, 2014, 61–68
  • [33] Shaffie E., Ahmad J., Kamarun D.: Rutting Performance of Hot Mix Asphalt Mixture using Nanopolyacrylate Polymer Modifier. Advanced Engineering and Technology, 753, 2015, 194–198
  • [34] Sun L., Xin X., Ren J.: Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Construction and Building Materials, 133, 2017, 358–366
  • [35] Kharissova O. V., Torres Martínez L., Kharisov B.: Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers. Advances in Carbon Nanostructures, 2016, 137-160
  • [36] Jaskuła P., Stienss M., Szydłowski C.: Effect of Polymer Fibres Reinforcement on Selected Properties of Asphalt Mixtures. Procedia Engineering, 172, 2017, 441–448
  • [37] Ziari H., Amini A., Goli A., Mirzaeiyan D.: Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks. Construction and Building Materials, 160, 2018, 415–426
  • [38] Khattak M. J., Khattab A., Rizvi H. R.: Characterization of carbon nano-fiber modified hot mix asphalt mixtures. Construction and Building Materials, 40, 2013, 738–745
  • [39] Tsantilis L., Baglieri O., Santagata E.: Low-temperature properties of bituminous nanocomposites for road applications. Construction and Building Materials, 171, 2018, 397–403
  • [40] Vargas M. A., Moreno L., Montiel R., Manero O., Vázquez H.: Effects of montmorillonite (Mt) and two different organo-Mt additives on the performance of asphalt. Applied Clay Science, 139, 2017, 20–27
  • [41] Golestani B., Nam B. H., Moghadas Nejad F., Fallah S.: Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Construction and Building Materials, 91, 2015, 32–38
  • [42] Ashish P. K., Singh D., Bohm S.: Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Materials and Pavement Design, 18, 5, 2017, 1007–1026
  • [43] Yao H., You Z., Li L., Goh S. W., Mills-Beale J., Shi X., Wingard D.: Evaluation of Asphalt Blended With Low Percentage of Carbon Micro-Fiber and Nanoclay. Journal of Testing and Evaluation, 41, 2, 2013, 20120068
  • [44] Ezzat H., El-Badawy S., Gabr A., Zaki E. S. I., Breakah T.:Evaluation of Asphalt Binders Modified with Nanoclay and Nanosilica. Procedia Engineering, 143, 2016, 1260–1267
  • [45] Iskender E.: Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Measurement, 93, 2016, 359–371
  • [46] de Melo J. V. S., Trichês G.: Evaluation of properties and fatigue life estimation of asphalt mixture modified by organophilic nanoclay. Construction and Building Materials, 140, 2017, 364–373
  • [47] Goh S. W., Akin M., You Z., Shi X.: Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture. Construction and Building Materials, 25, 1, 2011, 195–200
  • [48] Abandansari H. F., Modarres A.: Investigating effects of using nanomaterial on moisture susceptibility of hot-mix asphalt using mechanical and thermodynamic methods. Construction and Building Materials, 131, 2017, 667–675
  • [49] Abdullah M. E., Zamhari K. A., Hainin M. R., Oluwasola E. A., Nur N. I., Hassan N. A.: High temperature characteristics of warm mix asphalt mixtures with nanoclay and chemical warm mix asphalt modified binders. Journal of Cleaner Production, 122, 2016, 326–334
  • [50] Ameri M., Mohammadi R., Vamegh M., Molayem M.: Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures. Construction and Building Materials, 156, 2017, 107–113
  • [51] Yao H., You Z.: Effectiveness of Micro-and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests. Journal of Nanomaterials, 2016, 2645250
  • [52] Wang Z., Dai Q., Guo S.: Laboratory performance evaluation of both flake graphite and exfoliated graphite nanoplatelet modified asphalt composites. Construction and Building Materials, 149, 2017, 515–524
  • [53] Pszczoła M., Ryś D., Jaskuła P.: Analiza stref klimatycznych w polsce z uwzględnieniem klasyfikacji funkcjonalnej asfaltów performance grade. Roads and Bridges - Drogi i Mosty, 16, 4, 2017, 245–264
  • [54] Shah S. P., Hou P., Konsta-Gdoutos M. S.: Nano-modification of cementitious material: toward a stronger and durable concrete. Journal of Sustainable Cement-Based Materials, 5, 1–2, 2016, 1–22
  • [55] Saloma, Nasution A., Imran I., Abdullah M.: Improvement of concrete durability by nanomaterials. Procedia Engineering, 125, 2015, 608–612
  • [56] Sobolev K., Flores I., Hermosillo R., Torres-Martinez L. M.: Nanomaterials and Nanotechnology for High-Performance Cement Composites. Nanotechnology of Concrete: Recent Developments and Future Perspectives, 2008, 93–120
  • [57] Meng W., Khayat K. H.: Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Composites Part B: Engineering, 107, 2016, 113–122
  • [58] Dębińska E.: Wpływ nanokrzemionki na parametry mechaniczne kamienia cementowego. Nafta-Gaz, LXX, 4, 2014, 229–235
  • [59] Wu Z., Shi C., Khayat K. H., Wan S.: Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites, 70, 2016, 24–34
  • [60] Vera-Agullo J., Chozas-Ligero V., Portillo-Rico D., García-Casas M. J., Gutiérrez-Martínez A., Mieres-Royo J. M., Grávalos-Moreno J.: Mortar and Concrete Reinforced with Nanomaterials. Nanotechnology in Construction 3, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, 383–388
  • [61] Łukowski P., Adamczewski G.: Self-repairing of polymer-cement concrete. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 1, 2013,
  • [62] Jones W., Gibb A., Goodier C., Bust P., Song M., Jin J.: Nanomaterials in construction – what is being used, and where? Proceedings of the Institution of Civil Engineers - Construction Materials, 2016, 1–14
  • [63] Huang H., Ng M., Wu Y., Kong L.: Solvothermal synthesis of Sb:SnO 2 nanoparticles and IR shielding coating for smart window. Materials & Design, 88, 2015, 384–389
  • [64] Duarte F., Casimiro F., Correia D., Mendes R., Ferreira A.: A new pavement energy harvest system. 2013 International Renewable and Sustainable Energy Conference (IRSEC), 2013, 408–413
  • [65] Dezfooli A. S., Nejad F. M., Zakeri H., Kazemifard S.: Solar pavement: A new emerging technology. Solar Energy, 149, 2017, 272–284
  • [66] Liu X., Wu S., Ye Q., Qiu J., Li B.: Properties evaluation of asphaltbased composites with graphite and mine powders. Construction and Building Materials, 22, 3, 2008, 121–126
  • [67] Liu X., Wu S.: Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 25, 4, 2011, 1807–1811
  • [68] García A., Bueno M., Norambuena-Contreras J., Partl M. N.: Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 2013, 1–7
  • [69] Liu Q., Schlangen E., van de Ven M.: Induction Healing of Porous Asphalt. Transportation Research Record: Journal of the Transportation Research Board, 2305, 2012, 95–101
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-588311b9-41dd-48f0-b0ec-4dd05a779e5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.