PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analysis of non-linear free vibration of FGM nano-beams based on the conformable fractional non-local model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuum models generalized by fractional calculus are used in different mechanical problems. In this paper, by using the conformable fractional derivative (CFD) definition, a general form of Eringen non-local theory as a fractional non-local model (FNM) is formulated. It is then used to study the non-linear free vibration of a functional graded material (FGM) nano-beam in the presence of von-Kármán non-linearity. A numerical solution is obtained via Galerkin and multiple scale methods and effects of the integer and non-integer (fractional) order of stress gradient (in the non-local stress-strain relation) on the ratio of the non-local non-linear natural frequency to classical non-linear natural frequency of simply-supported (S-S) and clamped-free (C-F) FGM nano-beams are presented.
Rocznik
Strony
737--745
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Urmia University, Urmia, Iran
autor
  • Poznan University of Technology, Institute of Structural Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
autor
  • Mechanical Engineering Department, Tabriz University, Tabriz, Iran
Bibliografia
  • [1] T. Aksencer and M. Aydogdu, Levy type solution method for vibration and buckling of nanoplates using non-local elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43(4), pp. 954‒959, 2011.
  • [2] R. Ansari and S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science, 49, pp. 1244–1255, 2011.
  • [3] A.C. Eringen. Non-local Continuum field theories. Springer, New York, 2010.
  • [4] J. Peddieson, G.R. Buchanan, and R.P. McNitt. The role of strain gradients in the grain size effect for polycrystals. International Journal of Engineering Science, 41, pp. 305–312, 2003.
  • [5] R.A. Toupin. Elastic materials with couple-stress. Archive for Rational Mechanics and Analysis, 11(1), pp. 385–414, 1962.
  • [6] R.D. Mindlin and N.N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4, pp. 109–124, 1968.
  • [7] W. Nowacki. Theory of Micropolar Elasticity. CISM, Udine, 1972.
  • [8] A.C. Eringen. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, 15, pp. 909–923, 1966.
  • [9] M.E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), pp. 291–323, 1975.
  • [10] Eringen, A. C. On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), pp. 4703‒4710, 1983.
  • [11] Challamel, N., Zorica, D., Atanacković, T.M., and Spasić, D.T. On the fractional generalization of Eringenʼs non-local elasticity for wave propagation. Comptes Rendus Mécanique, 341(3), pp. 298‒303, 2013.
  • [12] Sumelka, W. Non-local Kirchhoff–Love plates in terms of fractional calculus. Archives of Civil and Mechanical Engineering, 15(1), pp. 231‒242, 2015.
  • [13] Demir, D.D., Bildik, N., and Sinir, B.G. Application of fractional calculus in the dynamics of beams. Boundary Value Problems, 1, pp. 1‒13, 2012.
  • [14] Poldubny, I., Fractional Differential Equations. Academic Press, San Diego, 1999.
  • [15] Di Paola M. and Zingales M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. International Journal of Solids and Structures, 45, pp. 5642–5659, 2008.
  • [16] De Espındola, J.J., da Silva Neto, J.M., and Lopes, E.M. A generalised fractional derivative approach to viscoelastic material properties measurement. Applied Mathematics and Computation, 164(2), pp. 493‒506, 2005.
  • [17] Bagley R.L. and Torvik P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27(3), 201, 1983.
  • [18] Lazopoulos K.A., Non-local continuum mechanics and fractional calculus, Mechanics Research Communications, 33, pp. 753–757, 2006.
  • [19] Pálfalvi, A. Efficient solution of a vibration equation involving fractional derivatives. International Journal of Non-Linear Mechanics, 45(2), pp. 169‒175, 2010.
  • [20] Atanackovic, T. M. and Stankovic, B. Generalized wave equation in non-local elasticity. Acta Mechanica, 208(1‒2), pp. 1‒10, 2009.
  • [21] W. Sumelka, Fractional calculus for continuum mechanics – anisotropic non-locality, Bull. Pol. Ac.: Tech., 64, 2, pp. 361‒372, 2016.
  • [22] W. Sumelka, R. Zaera, and J. Fernández-Sáez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics, Meccanica, 50, 9, pp. 2309‒2323, 2015.
  • [23] Sumelka, W., Blaszczyk, T., and Liebold, C. Fractional Euler– Bernoulli beams: Theory, numerical study and experimental validation. European Journal of Mechanics-A/Solids, 54, pp. 243‒251, 2015.
  • [24] Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, pp. 65‒70, 2014.
  • [25] Bhrawy, A. H. and Alofi, A. S. The operational matrix of fractional integration for shifted Chebyshev polynomials. Applied Mathematics Letters, 26(1), pp. 25‒31, 2013.
  • [26] Secer, A., Alkan, S., Akinlar, M. A., and Bayram, M. Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013: 281, 2013.
  • [27] Ostalczyk, P. Remarks on five equivalent forms of the fractional – order backward – difference. Bull. Pol. Ac.: Tech., 62(2), pp. 271‒278, 2014.
  • [28] Saadatmandi, A. and Dehghan, M. A new operational matrix for solving fractional-order differential equations. Computers & Mathematics with Applications, 59(3), pp. 1326‒1336, 2010.
  • [29] Zbiciak, A. and Z. Kozyra. Dynamic analysis of a soft-contact problem using viscoelastic and fractional-elastic rheological models. Archives of Civil and Mechanical Engineering, 15(1), pp. 286‒291, 2015.
  • [30] Katugampola, U.N. A new fractional derivative with classical properties. arXiv preprint arXiv: (2014). 1410.6535.
  • [31] Abdeljawad, T. On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, pp. 57‒66, 2015.
  • [32] Nazemnezhad, R. and Hosseini-Hashemi, S. Non-local nonlinear free vibration of functionally graded nanobeams. Composite Structures, 110, pp. 192‒199, 2014.
  • [33] Rahimi, Z., Sumelka, W., and Yang, Xiao-Jun. Linear And Non-Linear Free Vibration Of Nano Beams Based On A New Fractional Non-Local Theory, Engineering Computations, 34 (5), pp. 1754 -1770, 2017.
  • [34] Abbasnejad, B., Rezazadeh, G., and Shabani, R. Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mechanica Solida Sinica, 26(4), pp. 427‒440, 2013.
  • [35] Vahdat, Armin Saeedi and Ghader Rezazadeh. Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. Journal of the Franklin Institute, 348(4), pp. 622‒639, 2011.
  • [36] Z. Rahimi, G. Rezazadeh, W. Sumelka, and X.-J. Yang. A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the fractional non-linear nonlocal theory. Archives of Mechanics, 69, 6, pp. 413–433, 2017.
  • [37] Pecherski, R.B. Macroscopic measure of the rate of deformation produced by micro-shear banding. Archives of Mechanics, 49(2), pp. 385‒40, 1997.
  • [38] Vasily E. Tarasov, Local Fractional Derivatives of Differentiable Functions are Integer-order Derivatives or Zero, International Journal of Applied and Computational Mathematics, 2(2), pp. 195–201, 2016.
  • [39] R. Almeida, M. Guzowska, and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Mathematics, 14, pp. 1122–1124, 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5882829f-cd62-42a8-bbde-886bee164c98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.