Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Continuum models generalized by fractional calculus are used in different mechanical problems. In this paper, by using the conformable fractional derivative (CFD) definition, a general form of Eringen non-local theory as a fractional non-local model (FNM) is formulated. It is then used to study the non-linear free vibration of a functional graded material (FGM) nano-beam in the presence of von-Kármán non-linearity. A numerical solution is obtained via Galerkin and multiple scale methods and effects of the integer and non-integer (fractional) order of stress gradient (in the non-local stress-strain relation) on the ratio of the non-local non-linear natural frequency to classical non-linear natural frequency of simply-supported (S-S) and clamped-free (C-F) FGM nano-beams are presented.
Rocznik
Tom
Strony
737--745
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Mechanical Engineering Department, Urmia University, Urmia, Iran
autor
- Poznan University of Technology, Institute of Structural Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
autor
- Mechanical Engineering Department, Tabriz University, Tabriz, Iran
Bibliografia
- [1] T. Aksencer and M. Aydogdu, Levy type solution method for vibration and buckling of nanoplates using non-local elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 43(4), pp. 954‒959, 2011.
- [2] R. Ansari and S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science, 49, pp. 1244–1255, 2011.
- [3] A.C. Eringen. Non-local Continuum field theories. Springer, New York, 2010.
- [4] J. Peddieson, G.R. Buchanan, and R.P. McNitt. The role of strain gradients in the grain size effect for polycrystals. International Journal of Engineering Science, 41, pp. 305–312, 2003.
- [5] R.A. Toupin. Elastic materials with couple-stress. Archive for Rational Mechanics and Analysis, 11(1), pp. 385–414, 1962.
- [6] R.D. Mindlin and N.N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4, pp. 109–124, 1968.
- [7] W. Nowacki. Theory of Micropolar Elasticity. CISM, Udine, 1972.
- [8] A.C. Eringen. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, 15, pp. 909–923, 1966.
- [9] M.E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), pp. 291–323, 1975.
- [10] Eringen, A. C. On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), pp. 4703‒4710, 1983.
- [11] Challamel, N., Zorica, D., Atanacković, T.M., and Spasić, D.T. On the fractional generalization of Eringenʼs non-local elasticity for wave propagation. Comptes Rendus Mécanique, 341(3), pp. 298‒303, 2013.
- [12] Sumelka, W. Non-local Kirchhoff–Love plates in terms of fractional calculus. Archives of Civil and Mechanical Engineering, 15(1), pp. 231‒242, 2015.
- [13] Demir, D.D., Bildik, N., and Sinir, B.G. Application of fractional calculus in the dynamics of beams. Boundary Value Problems, 1, pp. 1‒13, 2012.
- [14] Poldubny, I., Fractional Differential Equations. Academic Press, San Diego, 1999.
- [15] Di Paola M. and Zingales M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. International Journal of Solids and Structures, 45, pp. 5642–5659, 2008.
- [16] De Espındola, J.J., da Silva Neto, J.M., and Lopes, E.M. A generalised fractional derivative approach to viscoelastic material properties measurement. Applied Mathematics and Computation, 164(2), pp. 493‒506, 2005.
- [17] Bagley R.L. and Torvik P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27(3), 201, 1983.
- [18] Lazopoulos K.A., Non-local continuum mechanics and fractional calculus, Mechanics Research Communications, 33, pp. 753–757, 2006.
- [19] Pálfalvi, A. Efficient solution of a vibration equation involving fractional derivatives. International Journal of Non-Linear Mechanics, 45(2), pp. 169‒175, 2010.
- [20] Atanackovic, T. M. and Stankovic, B. Generalized wave equation in non-local elasticity. Acta Mechanica, 208(1‒2), pp. 1‒10, 2009.
- [21] W. Sumelka, Fractional calculus for continuum mechanics – anisotropic non-locality, Bull. Pol. Ac.: Tech., 64, 2, pp. 361‒372, 2016.
- [22] W. Sumelka, R. Zaera, and J. Fernández-Sáez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics, Meccanica, 50, 9, pp. 2309‒2323, 2015.
- [23] Sumelka, W., Blaszczyk, T., and Liebold, C. Fractional Euler– Bernoulli beams: Theory, numerical study and experimental validation. European Journal of Mechanics-A/Solids, 54, pp. 243‒251, 2015.
- [24] Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, pp. 65‒70, 2014.
- [25] Bhrawy, A. H. and Alofi, A. S. The operational matrix of fractional integration for shifted Chebyshev polynomials. Applied Mathematics Letters, 26(1), pp. 25‒31, 2013.
- [26] Secer, A., Alkan, S., Akinlar, M. A., and Bayram, M. Sinc-Galerkin method for approximate solutions of fractional order boundary value problems. Boundary Value Problems, 2013: 281, 2013.
- [27] Ostalczyk, P. Remarks on five equivalent forms of the fractional – order backward – difference. Bull. Pol. Ac.: Tech., 62(2), pp. 271‒278, 2014.
- [28] Saadatmandi, A. and Dehghan, M. A new operational matrix for solving fractional-order differential equations. Computers & Mathematics with Applications, 59(3), pp. 1326‒1336, 2010.
- [29] Zbiciak, A. and Z. Kozyra. Dynamic analysis of a soft-contact problem using viscoelastic and fractional-elastic rheological models. Archives of Civil and Mechanical Engineering, 15(1), pp. 286‒291, 2015.
- [30] Katugampola, U.N. A new fractional derivative with classical properties. arXiv preprint arXiv: (2014). 1410.6535.
- [31] Abdeljawad, T. On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, pp. 57‒66, 2015.
- [32] Nazemnezhad, R. and Hosseini-Hashemi, S. Non-local nonlinear free vibration of functionally graded nanobeams. Composite Structures, 110, pp. 192‒199, 2014.
- [33] Rahimi, Z., Sumelka, W., and Yang, Xiao-Jun. Linear And Non-Linear Free Vibration Of Nano Beams Based On A New Fractional Non-Local Theory, Engineering Computations, 34 (5), pp. 1754 -1770, 2017.
- [34] Abbasnejad, B., Rezazadeh, G., and Shabani, R. Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mechanica Solida Sinica, 26(4), pp. 427‒440, 2013.
- [35] Vahdat, Armin Saeedi and Ghader Rezazadeh. Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. Journal of the Franklin Institute, 348(4), pp. 622‒639, 2011.
- [36] Z. Rahimi, G. Rezazadeh, W. Sumelka, and X.-J. Yang. A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the fractional non-linear nonlocal theory. Archives of Mechanics, 69, 6, pp. 413–433, 2017.
- [37] Pecherski, R.B. Macroscopic measure of the rate of deformation produced by micro-shear banding. Archives of Mechanics, 49(2), pp. 385‒40, 1997.
- [38] Vasily E. Tarasov, Local Fractional Derivatives of Differentiable Functions are Integer-order Derivatives or Zero, International Journal of Applied and Computational Mathematics, 2(2), pp. 195–201, 2016.
- [39] R. Almeida, M. Guzowska, and T. Odzijewicz, A remark on local fractional calculus and ordinary derivatives, Open Mathematics, 14, pp. 1122–1124, 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5882829f-cd62-42a8-bbde-886bee164c98