PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of driving stability of a vehicle–trailer combination depending on the load’s position within the trailer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Passenger cars are a means of transportation used widely for various purposes. The category that a vehicle belongs to is largely responsible for determining its size and storage capacity. There are situations when the capacity of a passenger vehicle is not sufficient. On the one hand, this insufficient capacity is related to a paucity in the space needed for stowing luggage. It is possible to mount a rooftop cargo carrier or a roof basket on the roof of a vehicle. If a vehicle is equipped with a towbar, a towbar cargo carrier can be used for improving its space capacity. These accessories, however, offer limited additional space, and the maximal load is determined by the maximal payload of the concerned vehicle. If, on the other hand, there is a requirement for transporting a load with a mass or dimensions that are greater than what could be supported using these accessories, then, provided the vehicle is equipped with a towbar, a trailer represents an elegant solution for such demanding requirements. A standard flat trailer allows the transportation of goods of various characters, such as goods on pallets, bulk material, etc. However, the towing of a trailer changes the distribution of the loads, together with changes of loads of individual axes of the vehicle–trailer axles. The distribution of the loads is one of the key factors affecting the driving properties of a vehicle–trailer combination in terms of driving stability, which is mainly a function of the distribution of the load on the trailer. This research introduces a study into how the distribution of the load on a trailer influences the driving stability of a vehicle–trailer combination. The research activities are based on simulation computations performed in a commercial multibody software. While the results presented in the article are reached for a particular vehicle–trailer combination as well as for a particular set of driving conditions, the applicability of the findings can also be extended more generally to the impact that the load distributions corresponding to various vehicle–trailer combinations have on the related parameters and other driving properties.
Rocznik
Strony
60--67
Opis fizyczny
Bibliogr. 42 poz
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Computer Science and Technology, Lomza State University of Applied Sciences, ul. Akademicka 14, 18-400 Łomża, Poland
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
  • Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Gerlici J, Sakhno V, Yefymenko A, Verbitskii V, Kravchenko A, Kravchenko K. The stability analysis of two-wheeled vehicle model. MATEC Web of Conference. 2018; 157: 1-10. https://doi.org/10.1051/matecconf/201815701007
  • 2. Aldughaiyem A, Salamah YB, Ahmad I. Control Design and Assess-ment for a revesing tractor – trailer system using a cascade control-ler. Applied Sciences [Internet]. 2021 Nov 11; 11(22): 10634. Availa-ble form: https://doi.org/10.3390/app112210634
  • 3. Mikhailov AV, Zhigulskaya AI, Kasakov YA. Modeling of peat tractor semi-trailer motion. International Conference Aviation Engineering and Transportatin (AviaEnT 2020), September 21-26, 2020, Irkutsk, Russia. https://doi.org/10.1088/1757-899X/1061/1/012026
  • 4. Milani S, Unlusoy YS, Marzbani H, Jazar RN. Semitrailer Steering control for improved articulated vehicle manoeuvrability and stability. Nonlinear Engineering. 2019; 8(1): 568-581. https://doi.org/10.1515/nleng-2018-0124
  • 5. Emheisen MA, Emirler MT, Ozkan B. Lateral stability control of articulated heavy vehicles based on active steering system. Interna-tional Journal of Mechanical Engineering and Robotics Research. 2022; 11(8): 575-582. https://doi.org/10.18178/ijmerr.11.8.575-582
  • 6. Chen Y, Peterson AW, Zhang C, Ahmdian M. A simulation-based comparative study on lateral characteristics of trucks with double and triple trailers. International Journal of Vehicle Safety. 2019; 11(2): 136-157. https://doi.org/10.1504/IJVS.2019.101857
  • 7. Mataras DA, Luque P, Alonso M. Phase plane analysis applied to non-explicit multibody vehicle models. Multibody System Dynamics. 2022; 56(2): 173-188. https://doi.org/10.1007/s11044-022-09846-9
  • 8. Hussain K, Stein W, Day AJ. Modelling commercial vehicle handling and rolling stability. Proceedings of the Institution of Mechanical En-gineers, Part K: Journal of Multi-body Dynamics. 2005; 219(4): 357-369. https://doi.org/10.1243/146441905X48707
  • 9. Marienka P, Francak M, Jagelcak J, Synak F. Comparison of braking characteristics of solo vehicle and selected types of vehicle combina-tions. Horizons of Autonomous Mobility in Europe (LOGI 2019), No-vember 14-15, 2019, České Budějovice, Czech Republic. https://doi.org/10.1016/j.trpro.2020.02.007
  • 10. Damjanovic M, Zeljko S, Stanimirovic D, Tanackov I, Marinkovic D. Impact of the number of vehicles on traffic safety: Multiphase model-ing. Facta Universitatis Series: Mechanical Engineering. 2022; 20(1): 177-197. https://doi.org/10.22190/FUME220215012D
  • 11. Skrucany T, Vrabel J, Kazimir P. The influence of the cargo weight and its position on the braking characteristics of light commercial ve-hicles. Open Engineering, 2020; 10(1): 154-165. https://doi.org/10.1515/eng-2020-0024
  • 12. Vrabel J, Skrucany T, Bartuska L, Koprna J. Movement analysis of the semitrailer with the tank-container at hard braking – the case study. 4th International Conference of Computational Methods in En-gineering Science (CMES 2019), November 21-23, 2019, Kazimierz Dolny, Poland. https://doi.org/10.1088/1757-899X/710/1/012025
  • 13. Mattas K, Albano G, Riccardo D, Galassi MCh, Suarez-Bertoa R, Sandor V, Ciuffo B. Driver models for the definition of safety require-ments of automated vehicles in international regulations. Application to motorway driving conditions. Accident Analysis and Prevention. 2022; 174: 1-16. https://doi.org/10.1016/j.aap.2022.106743
  • 14. Gechev T, Mruzek M, Barta D. Comparison of real driving cycles and consumed braking power in suburban Slovakian driving. 9th Interna-tional Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies (Bultrans 2017), September 11-13, 2017, Sozopol, Bulgaria. https://doi.org/10.1051/matecconf/201713302003
  • 15. Yevtushenko, A., Kuciej, M., Topczewska, K.: Analytical model for investigation of the effect of friction power on temperature in the disk brake. Advances in Mechanical Engineering. 2017; 9(12): 1-12. https://doi.org/10.1177/1687814017744095
  • 16. Yevtushenko A, Kuciej M, Topczewska K. Analytical model to inves-tigate distributions of the thermal stresses in the pad and disk for dif-ferent temporal profiles of friction power. Advances in Mechanical Engineering. 2018; 10(10): 1-10. https://doi.org/10.1177/1687814018806670
  • 17. Koch S, Koppen E, Grabner N, von Wagner U. On the influence of multiple equilibrium positions on brake noise. Facta Universitatis Se-ries: Mechanical Engineering. 2021; 19(4): 613-632. https://doi.org/10.22190/FUME210106020K
  • 18. Bai Z, Lu Y, Li Y. Method of improving lateral stability by using addi-tional yaw moment of semi-trailer. Energies [Internet]. 2020 Nov 30; 13(23):6317. Available from: https://doi.org/10.3390/en13236317
  • 19. Lack T, Gerlici J. Analysis of vehicles dynamic properties from the point of view of passenger comfort. Communication – Scientific Let-ters of the University of Zilina. 2008; 10(3): 10-18. https://doi.org/10.26552/com.C.2008.3.10-18
  • 20. Rigatos G, Siano P, Wira P, Busawon K, Binns R. A nonlinear H-infinity control approach for autonomous truck and trailer systems. Unmanned Systems. 2020; 8(1): 49-69. https://doi.org/10.1142/S2301385020500041
  • 21. Road traffic act No. 8/2009.
  • 22. Wang D, Chen S, Zhang W, Du D. The roll stability analysis of semi-trailer based on the wheel force. Computers, Materials and Continua. 2022; 71(1): 1837-1848. https://doi.org10.32604/cmc.2022.023033
  • 23. Chajkin AP, Dobretsov RY, Sokolova VA, Teterina IA, Kamenchukov AV, Tiknonov EA, Bazykin VI. Mathematical model for assessing lat-eral stability of articulated tracked vehicles. 3rd International Scientific Conference on Applied Pysics, Information Technologies and Engineering (APITECH-III 2021), September 24 – October 3, 2021, Kras-noyarsk, Russia. https://doi.org/10.1088/1742-6596/2094/4/042005
  • 24. Voros I, Takacs D. The effects of trailer towing on the dynamics of a lane-keeping controller. ASME 2020 Dynamic Systems and Control Conference. Virtual, Online, 2020. https://doi.org/10.1115/DSCC2020-3141
  • 25. Vasko M, Leitner B, Saga M. Computational fatigue damage predic-tion of the lorry frames under stochastic random excitation. Commu-nication – Scientific Letters of the University of Žilina. 2010; 12(4): 62-67.
  • 26. Lot R, Massaro M. A symbolic approach to the multibody modeling of road vehicles. International Journal of Applied Mechanics [Internet]. 2017 Jul 1; 9(5):1750068. Available from: https://doi.org/10.1142/S1758825117500685
  • 27. Xing J. Determination of instability critical speed of articulated vehicle on ramp section based on response surface method. International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology (MEMAT 2021), April 23-25, 2021, Gui-lin, China. https://doi.org10.1088/1742-6596/1939/1/012075
  • 28. Zhang Q, Su Ch, Zhou Y, Zhang Ch, Ding J, Wang Y. Numerical investigation on handling stability of a heavy tractor semi-trailer under crosswind. Applied Sciences [Internet]. 2020 May 26; 10(11):3672. Available from: https://doi.org/10.3390/app10113672
  • 29. Jagelcak J, Gnap J, Kuba O, Frnda J, Kostrzewski M. Determination of turning radius and lateral acceleration of vehicle by GNSS/INS sensor. Sensors [Internet]. 2022 Mar 16; 22(6):2298. Available from: https://www.mdpi.com/1424-8220/22/6/2298
  • 30. Guo R, Siquan L, Zulin H, Xu L. Study on Vehicle-road interaction for autonomous driving. Sustainability [Internet]. 2022 Sep 14; 14(18):11693. Available from: https://www.mdpi.com/2071-1050/14/18/11693
  • 31. Yang Z, Wang L, Liu F, Li Z. Nonlinear dynamic analysis of constant-speed and variable-speed of autonomous vehicle passing uneven road. Journal of Vibroengineering. 2022; 24(4): 726-744. https://doi.org/10.21595/jve.2022.22250
  • 32. Lack T, Gerlici J. Analysis of vehicles dynamic properties from: The point of view of passenger comfort. Communications – Scientific Let-ters of the University of Žilina. 2008; 10(3): 10-18.
  • 33. Gerlici J, Lack T, Ondrova Z. Evaluation of comfort for passengers of railway vehicles. Communications – Scientific Letters of the Universi-ty of Žilina. 2007; 9(4): 44-49.
  • 34. De Bernardis, M., Rini, G., Bottiglione, F., Hartavi, A.E., Sorniotti, A.: On nonlinear model predictive direct yaw moment control for trailer sway mitigation. Vehicle System Dynamics. 2022; in press: 1-27. https://doi.org/10.1080/00423114.2022.2054352
  • 35. Zhou S, Zhang S. Study on tractor semi-trailer roll stability control. The Open Mechanical Engineering Journal. 2014; 8(A238): 238-242. https://doi.org/10.2174/1874155x01408010238
  • 36. Koszałka G, Zniszczynski A. A simulation study on the manoeuvera-bility of a large size semitrailer. Transport. 2016; 31(4): 408-415. https://doi.org/10.3846/16484142.2015.1057224
  • 37. Pacejka H. Modeling of the as a vehicle component with applications. CCG-Course V2.01, Carl-Cranz-Gesellschaft. 1982.
  • 38. Rill G. Sophisticated but quite simple contact calculation for handling tire models. Multibody System Dynamics. 2019; 45(2): 131-153. https://doi.org/10.1007/s11044-018-9629-4
  • 39. Nunic ZB, Ajanovic M, Miletic D, Lojic R. Determination of the rolling resistance coefficient under different traffic conditions. Facta Univer-sitatis Series: Mechanical Engineering. 2020; 18(4): 653-664. https://doi.org/10.22190/FUME181116015N
  • 40. Istenik R, Barta D, Mucha W. Influence of the wheels on the automo-bile dynamics. Komunikacie. 2004; 6(1): 26-28.
  • 41. Car trailer fail – car accident in Poland. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=mfLnLwFcSBc
  • 42. Tongue weight safety demonstration. 2022; Online, [cited 2022-11-04]: Available on: https://www.youtube.com/watch?v=w9Dgxe584Ss
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-587c0488-0f82-4827-a064-b2d1008ed7ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.