PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive study of the microclimate parameters in the residential building

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relevance of the research lies in the development of the current question about the influence of microclimate quality on the efficiency of residential units. The aim of the study is to examine how the microclimate parameters affect the efficiency of residential buildings. Findings. The results obtained are essential for the design of energyefficient and comfortable residential buildings. The scientific novelty and practical importance of research resides in the thorough study of microclimate in low-rise residential buildings. Microclimate deviation charts for residential buildings have been produced.
Czasopismo
Rocznik
Strony
87--96
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Prydniprovska State Academy of Civil Engineering and Architecture, Ukraine
  • Railway Research Institute (Instytut Kolejnictwa)
  • Dnipro National University of Railway Transport, Ukraine
autor
  • Prydniprovska State Academy of Civil Engineering and Architecture, Ukraine
  • Railway Research Institute (Instytut Kolejnictwa)
  • Railway Research Institute (Instytut Kolejnictwa)
autor
  • Railway Research Institute (Instytut Kolejnictwa)
  • Railway Research Institute (Instytut Kolejnictwa)
Bibliografia
  • 1. Arteconi A., Polonara F.: Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings. Energies 11, 7, 1846, 2018.
  • 2. Attia S. et al.: Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy Build. 239, 110869, 2021.
  • 3. Baciu I.-R. et al.: Green roof influence over the characteristics of the linear thermal bridges. 2019, DOI 10.1088/1757-899x/586/1/012007.
  • 4. Borelli D. et al.: A comprehensive study devoted to determine linear thermal bridges transmittance in existing buildings. Energy Build. 224, 110136, 2020.
  • 5. Danilevski L.N., Danilevsky S.L.: The algorithm and accuracy of definition of heattechnical indicators of buildings. Magazine of Civil Engineering, 73, 5, 2017.
  • 6. Directorate-General for Energy (European Commission): Energy roadmap 2050, https://op.europa.eu/en/publication-detail/-/publication/e758bc9e-b2f9-43f7-8149-ea03becf5c61/language-en, 2012, DOI 10.2833/10759.
  • 7. Hafeez G. et al.: Efficient Energy Management of IoT-Enabled Smart Homes Under Price-Based Demand Response Program in Smart Grid. Sensors, 20, 11, 2020, DOI 10.3390/s20113155.
  • 8. Hakimi S.M., Hasankhani A.: Intelligent energy management in off-grid smart buildings with energy interaction. J. Clean. Prod. 244, 118906, 2020.
  • 9. Ilomets S. et al.: Impact of linear thermal bridges on thermal transmittance of renovated apartment buildings. Journal of Civil Engineering and Management, 23, 1, 96–104, 2017.
  • 10. Krajčík M., Šikula O.: Heat storage efficiency and effective thermal output: Indicators of thermal response and output of radiant heating and cooling systems, 2020, DOI 10.1016/j.enbuild.2020.110524.
  • 11. Kumar S. et al.: Effect of phase change material integration in clay hollow brick composite in building envelope for thermal management of energy efficient buildings. J. Building Phys. 43, 4, 351–364, 2020.
  • 12. Kwiatkowski, J., Rucińska, J.: Estimation of energy efficiency class limits for multi-family residential buildings in Poland. Energies. 13, 23, 6234 (2020).
  • 13. Lee S. et al.: Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach. Sensors, 21, 14, 2021, DOI 10.3390/s21144898.
  • 14. Levinskyte A. et al.: The Influence of Thermal Bridges for Buildings Energy Consumption of “A “Energy Efficiency Class. Journal of Sustainable Architecture and Civil Engineering, 15, 2, 47–58, 2016.
  • 15. Péan T.Q. et al.: Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings. J. Process Control, 74, 35–49, 2019.
  • 16. Shkarovskiy A., Mamedov S.: Improving the Efficiency of Non-Stationary Climate Control in Buildings with a Non-Constant Stay of People by Using Porous Materials. Materials, 14, 9, 2021, DOI 10.3390/ma14092307.
  • 17. Van Cutsem O. et al.: Cooperative energy management of a community of smart-buildings: A Blockchain approach. Int. J. Electr. Power Energy Syst. 117, 105643, 2020.
  • 18. Vunjak D. et al.: The influence of linear thermal transmittance of thermal bridges on the energy performance class of buildings – simplified method, 2016, DOI 10.7251/afts.2016.0814.073v.
  • 19. Wang K. et al.: IEEE Access Special Section Editorial: Energy Management in Buildings. IEEE Access. 8, 1453–1457, 2020.
  • 20. DBN V.2.6-31:2016. Teplova izolyacia budivel. [Thermal insulation of buildings.] // K.: Mіnregіonbud Ukraїni, 2017.
  • 21. DSTU B A. 2.2-12:2015 Energetichna efektivnist budivel [ Energy efficiency of buildings. Method of calculating energy consumption for heating, cooling, ventilation, lighting and hot water supply]. – K.: Mіnregіonbud Ukraїni, 2015.
  • 22. DSTU-N B V.1.1-27:2010. Budіvel’na klіmatologіja [Civil Engineering Climatology]. – K.: Mіnregіonbud Ukraїni, 2011.
  • 23. EN 13829 Thermal performance of building - Determination of air permeability of buildings - Fan pressurization method (ISO 9972:1996, modified).
  • 24. Energy performance of buildings - Calculation of energy use for space heating and cooling, European Committee for Standardization, 2008.
  • 25. Iurchenko Iev.L.: Development of the energy saving projects in the buildings of budget organizations on the basis of reinvestment. – Manuscript: 05.13.22 / Iurchenko Iev.L. – Dnipropetrovsk 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5879a15e-34a1-4be1-892a-7dc44c2ea71e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.