PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GIS and Index-Based Methods for Assessing the Human Health Risk and Characterizing the Groundwater Quality of a Coastal Aquifer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The massive dune aquifer of Bouteldja is one of the most exploited aquifers in Algeria; as a result, its piezometric level has declined. Such pressure on the dune aquifer, in addition to its moderate-to-severe vulnerability to pollution, may lead to deterioration of groundwater quality. This study is intended to assess the quality of aquifer groundwater for drinking, irrigation and industrial purposes, and also to evaluate health risks. To this end, we analyzed data of 16 physicochemical parameters collected from 25 groundwater samples. Using the Durov diagram, principal component analysis (PCA), and Pearson’s correlation matrix, we found that most major ions show similar origins related to ion exchange and the proximity of the sea. Our results showed that, overall, the groundwater intended for drinking purposes was of good or excellent quality over most the aquifer, where the majority of wells are located. However, the groundwater is mostly unsuitable for irrigation purposes according to the Kelly index (KI), percentage of sodium (Na %), magnesium hazard (MH), and irrigation water quality index (IWQI). Further, calculations of corrosivity ratios (CRs) indicated that the groundwater is unsuitable for industrial uses. Finally, a health risk assessment of iron heavy metal related to the hazard index (HI) for both ingestion and dermal exposure in children and adults showed negligible-to-low risk from iron exposure.
Twórcy
autor
  • Earth and Universe Sciences Department, Ziane Achour University of Djelfa, Djelfa 17000, PO Box 3117, Algeria
autor
  • Earth and Universe Sciences Department, Ziane Achour University of Djelfa, Djelfa 17000, PO Box 3117, Algeria
  • Department of Hydraulic, Ziane Achour University of Djelfa, Djelfa 17000, PO Box 3117, Algeria
  • Biological Sciences Department, Ziane Achour University of Djelfa, Djelfa 17000, PO Box 3117, Algeria
  • Earth and Universe Sciences Department, Ziane Achour University of Djelfa, Djelfa 17000, PO Box 3117, Algeria
  • Laboratoire des Réservoirs Souterrains: Pétroliers, Gaziers et Aquifères, Université de Ouargla, BP 30000, Algeria
Bibliografia
  • 1. Abbasnia A., Yousef N., Mahvi A.H., Nabizadeh R., Radfard M., Yousef M., Alimohammadi M. 2018. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2018.1458596
  • 2. Addinsoft. 2021. XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com.
  • 3. Adimalla N, Li P. 2019. Occurrence, health risks and geochemical mechanisms of fluoride and nitrate in groundwater of the rock dominant semiarid region, Telangana State, India. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 81–103.
  • 4. Ahmed M.T., Monir M.U., Hasan Md.Y., Rahman Md.M., Rifat Md.S.I., Islam Md.N., Khan A.S., Rahman Md.M., Islam Md.S. 2020. Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore. Journal of Groundwater Science and Engineering, 8(3), 259–273.
  • 5. Aichouri I. 2016. Modelization of the marine intrusion in the coastal aquifer of Annaba. Contribution of Salinometric analyses. P.hD. Thesis, Badji Mokhtar-Annba University, Annaba.
  • 6. Aitchison J. 1986. The statistical analysis of compositional data. Chapman and Hall, London.
  • 7. Assassi F., Hani A., Djabri L. 2004. Evolution chimique et vulnérabilité à la pollution de l’aquifère dunaire de Bouteldja (Nord Est Algérien). Sciences & Technologie Synthèse, 21, 89–95.
  • 8. Azlaoui M., Zeddouri A., Haied N., Nezli I.E., Foufou A. 2021. Assessment and mapping of groundwater quality for irrigation and drinking in a semi-arid area in Algeria. Journal of Ecological Engineering, 22, 19–32.
  • 9. Baloch M.Y.J., Zhang W., Chai J., Li S., Alqurashi M., Rehman G., Tariq A., Talpur S.A., Iqbal J., Munir M., Hussein E.E. 2021. Shallow groundwater quality assessment and its suitability analysis for drinking and irrigation purposes. Water, 13, 3361.
  • 10. Batarseh M., Imreizeeq E., Tilev S., Al Alaween M., Suleiman W., Al Remeithi A.M., Al Tamimi M.K., Al Alawneh M. 2021. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundwater for Sustainable Development, 14, 100611.
  • 11. Bhutiani R., Kulkarni D.B., Khanna D.R., Gautam A. 2016. Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Exposure and Health, 8(1), 3–18.
  • 12.Brown R.M., McClelland N.I., Deininger R.A., Tozer R.G. 1970. Water quality index-do we dare? Water Sewage Works, 117(10), 339–343.
  • 13.Bounab S., Bousnoubra H., Saou A. 2017. Hydrogeochemical typology of groundwater in the North-eastern of Algeria (Annaba-El Tarf). Sciences &Technologie Synthèse, 35, 166–177.
  • 14. Comas-Cufí M., Thió-Henestrosa S. 2011. CoDaPack 2.0: a stand-alone, multi-platform compositional software. In: EgozcueJ.J., Tolosana-Delgado R., Ortego M.I., (Eds.), CoDaWork’11: 4th International Workshop on Compositional Data Analysis. Sant Feliu de Guíxols.
  • 15. Djoudar Hallal D., Khelfi M.E.A., Zahouani S., Benamghar A., Haddad O., Ammari A. Joao Lobo-Ferreira P. 2019. Application of the GALDIT method combined with geostatistics at the Bouteldja aquifer (Algeria). Environmental Earth Sciences, 78, 22.
  • 16. Doneen, L. 1964. Notes on water quality in agriculture; Department of Water Sciences and Engineering, University of California, Davis, California.
  • 17. Durov S.A. 1948. Classification of natural waters and graphical representation of their composition. Doklady Akademii Nauk SSSR, 59, 87–90
  • 18. Ebrahimi P., Albanese S., Esposito L., Zuzolo D., Cicchella D. 2021. Coupling compositional data analysis (CoDA) with hierarchical cluster analysis (HCA) for preliminary understanding of the dynamics of a complex water distribution system: The Naples (South Italy) case study. Environmental Science: Water Research & Technology, 7, 1060–1077.
  • 19. Egbi C.D., Anornu G., Appiah-Adjei E.K., Ganyaglo S.Y., Dampare S.B. 2019. Evaluation of water quality using hydrochemistry, stable isotopes, and water quality indices in the Lower Volta River Basin of Ghana. Environment, Development and Sustainability, 21, 3033–3063.
  • 20. El-Amier Y.A., Kotb W.K., Bonanomi G., Fakhry H., Marraiki N.A., Abd-ElGawad A.M. 2021. Hydrochemical Assessment of the Irrigation Water Quality of the El-Salam Canal, Egypt. Water, 13, 2428.
  • 21. El-Rawy M., Fathi H., Abdalla F., Alshehri F., Eldeeb H. 2023. An Integrated Principal component and hierarchical cluster analysis approach for groundwater quality assessment in Jazan, Saudi Arabia. Water, 15, 1466.
  • 22. Ferhaoui S., Kechiched R., Bruguier O., Sinisi R., Kocsis L., Mongelli G., Bosch D., Ameur-Zaimeche O., Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. Journal of Geochemical Exploration, 241, 107058.
  • 23. Fipps, G. 2003. Irrigation water quality standards and salinity management strategies. Available online: https://gfipps.tamu.edu/files/2021/11/EB-1667-Salinity.pdf (accessed on 30 January 2023).
  • 24. Gaagai A., Aouissi H.A., Bencedira S., Hinge G., Athamena A., Haddam S., Gad M., Elsherbiny O., Elsayed S., Eid M.H., et al. 2023. Application of water quality indices, machine learning approaches, and GIS to identify groundwater quality for irrigation purposes: A case study of Sahara Aquifer, Doucen Plain, Algeria. Water, 15, 289.
  • 25. Gad M., Gaagai A., Eid M.H., Szűcs P., Hussein H., Elsherbiny O., Elsayed S., Khalifa M.M., Moghanm F.S., Moustapha M.E., et al. 2023. Groundwater quality and health risk assessment using indexing approaches, multivariate statistical analysis, artificial neural networks, and GIS techniques in El Kharga Oasis, Egypt. Water, 15, 1216.
  • 26. Gleizes G., Bouloton J., Bossière G., Collomb P. 1988. Données lithologiques et pétro-structurales nouvelles sur le massif cristallophyllien de l’Edough (Est-Algérien). C R AcadSci Paris 306(Série II), 1001–1008.
  • 27. Haied N., Chaab S., Saaidia B., Bougherira N. 2015. Impact of water recharge on the ground water quality of the Bouteldja unconfined dune aquifer. Sciences &Technologie Synthèse, 30, 48–57.
  • 28. Haied N. 2015. Evaluation quantitative d’une réalimentation de la nappe libre du massif dunaire de Bouteldja dans la région de Bordj Ali Bey et son impact sur la qualité des eaux souterraines. Ph.D. Thesis, BadjiMokhtar-Annaba University, Annaba.
  • 29. Hilly J. 1962. Etude géologique du massif de l’Edough et du Cap de Fer (Est constantinois). Bulletin n°19 carte géologique Algérie, Alger.
  • 30. Hui T., Xiujuan L., Qifa S., Qiang L., Zhuang K., Yan G. 2021. Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Lianhuashan District, China. Polish Journal of Environmental Studies, 30(1), 141–153.
  • 31. Imbulana S., Oguma K., Takizawa S. 2021.Seasonal variations in groundwater quality and hydrogeo-chemistry in the endemic areas of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Water, 13, 3356.
  • 32.Joleaud L. 1936. Etude géologique de la région de Bône et de la Calle. Bulletin Service Carte Géologie de l’Algérie 2e série, 12, Alger.
  • 33. Karunanidhi D., Aravinthasamy P., Subramani T., Roy, P.D., Srinivasamoorthy K. 2019. Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, South India. Natural Resources Research, 1–27.
  • 34. Kechiched R., Nezli I.E., Foufou A., Belksier M.S., Benhamida S.A., Djeghoubbi R., Slamene N., Ameur-zaimeche O. 2020. Fluoride-bearing groundwater in the complex terminal aquifer (a case study in Hassi Messaoud area, southern Algeria): hydrochemical characterization and spatial distribution assessed by indicator kriging. Sustainable Water Resources Management, 6, 54.
  • 35. Kelley W.P. 1963. Use of saline irrigation water. Soil Science, 95, 385–391.
  • 36. Khérici N. 1985. Coastal sandy aquifer, hydrodynamics and hydrochemistry. Example of Bouteldja aquifer (N-E Algeria). P.hD. Thesis, Montpellier University, Montpellier.
  • 37. Lima I.Q., Muñoz M.O., Ramos O.E., Bhattacharya P., Choque R.Q., Aguirre J.Q., Sracek O. 2019. Hydrochemical assessment with respect to arsenic and other trace elements in the Lower Katari Basin, Bolivian Altiplano. Groundwater for Sustainable Development, 8, 281–293.
  • 38. Lloyd J.A., Heathcote J.A. 1985. Natural inorganic hydrochemistry in relation to groundwater: an introduction. Oxford University Press, New York.
  • 39. Meireles A., Andrade E.M., Chaves L., Frischkorn H., Crisostomo L.A. 2010. A new proposal of the classification of irrigation water. Revista Ciência Agronômica, 41(3), 349–357.
  • 40. Patel P., Raju N.J., Reddy B.C.S.R., Suresh U., Gossel W., Wycisk P. 2016. Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi river basin, Andhra Pradesh, India. Environmental Earth Science, 75, 611.
  • 41. Reimann C., Filzmoser P. 2000. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–1014.
  • 42. Richards L. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science, 78, 154.
  • 43.Rodier J., Brazin C., Broutin J.P., Chambon P., Champsaur H., Rodi L. 1996. L’analyse de l’eau, 8ème édition. Dunod, Paris.
  • 44. Saaidia B. 2006. Study of the possibilities of Annaba and Bouteldja aquifers artificial recharge as a means of combating pollution and depletion. Ph.D. Thesis, Badji Mokhrtar-Annaba University, Annaba.
  • 45. Saha P., Paul B. 2019. Groundwater quality assessment in an industrial hotspot through interdisciplinary techniques. Environmental Monitoring and Assessment, 191(Suppl 2), 326.
  • 46. Sako A., Kafando S. 2021. Hydrogeochemical and spatial assessment of groundwater quality from basement aquifers in the central plateau region of Burkina Faso, West Africa. Environmental Earth Sciences, 80, 358.
  • 47. Salameh M.T.B., Alraggad M., Harahsheh S.T. 2021. The water crisis and the conflict in the Middle East. Sustainable Water Resources Management, 7, 69.
  • 48. Sebaïti A.B. 2010. Optimized management of water resources of a coastal aquifer (case of the Annaba aquifer (North-East of Algeria)). Lille University, Villeneuve d’Ascq.
  • 49. Sedrati N., Djabri L., Chaffai H. 2016. Evaluating groundwater pollution and assessing the vulnerability. Case of massive dune of Bouteldja, Algeria. Journal of Biodiversity and Environmental Sciences (JBES), 9(5), 129–136.
  • 50. Selvam S., Jesuraja K., Roy P.D., Venkatramanan S., Chung S.Y., Elzain H.E., Muthukumar P., Nath A.V., Karthik R. 2021. Assessment of groundwater from an industrial coastal area of south India for human health risk from consumption and irrigation suitability. Environmental Research, 200, 111461.
  • 51. Shil S., Singh U.K., Mehta P. 2019. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9(7), 168.
  • 52. Singh R., Upreti P., Allemailem K.S., Almatroudi A., Rahmani A.H., Albalawi G.M. 2022. Geospatial Assessment of groundwater quality and associated health problems in the western region of India. Water, 14, 296.
  • 53. Solangi G.S., Siyal A.A., Babar M.M., Siyal P. 2019. Groundwater quality evaluation using the water quality index (WQI), the synthetic pollution index (SPI), and geospatial tools: a case study of Sujawal district, Pakistan. Human and Ecological Risk Assessment: An International Journal, 26(6), 1529–1549.
  • 54. Taşan M., Demir Y., Taşan S. 2022. Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey. Water Supply, 22, 3431–3447.
  • 55. Toubal A.C. 1998. Contribution of the geophysics to the study of the hydrodynamic problems and the underground marine intrusion. Example of the Annaba plains, of the Mitidja and Algiers Bay. Ph.D. Thesis, Bab Ezzouar University, Algiers.
  • 56. Vila J.M. 1980. La chaîne alpine d’Algérie orientale et des confins Algéro-tunisiens. P.hD. Thesis, Pierre et Marie-Curie University, Paris.
  • 57. Wang J., Xu J. 2023. Spatial distribution and controlling factors of groundwater quality parameters in Yancheng area on the lower reaches of the Huaihe River, central east China. Sustainability, 15, 6882.
  • 58. WHO. 2017. Guidelines for drinking-water quality world health organization, 4th edn, Geneva, Switzerland.
  • 59. Wilcox, L. 1955. Classification and use of irrigation waters. United State Department of Agriculture, Washington.
  • 60. Xu P., Feng W., Qian H., Zhang Q. 2019. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 16, 1492.
  • 61. Ye X., Zhou Y., Lu Y., Du X. 2022. Hydrochemical evolution and quality assessment of groundwater in the Sanjiang Plain, China. Water, 14, 1265.
  • 62. Yin Z., Duan R., Li P., Li W. 2021. Water quality characteristics and health risk assessment of main water supply reservoirs in Taizhou City, east China. Human and Ecological Risk Assessment: An International Journal, DOI: https://doi.org/10.1080/10807039.2021.1958670
  • 63. Zhang Y., Xu M., Li X., Qi J., Zhang Q., Guo J., Yu L., Zhao R. 2018. Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in Kangding County, south-western China. Water, 10, 80.
  • 64. Zhang Q., Xu P., Qian H., 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposue and Health, 12, 487–500.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5877c564-e1f7-4988-b737-d171e7d22653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.