PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Track finding with Deep Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High energy physics experiments require fast and efficient methods for reconstructing the tracks of charged particles. The commonly used algorithms are sequential and the required CPU power increases rapidly with the number of tracks. Neural networks can speed up the process due to their capability of modeling complex non-linear data dependencies and finding all tracks in parallel. In this paper, we describe the application of the deep neural network for reconstructing straight tracks in a toy two-dimensional model. It is planned to apply this method to the experimental data obtained by the MUonE experiment at CERN.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
475--491
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Institute of Nuclear Physics PAN, Krakow, Poland
  • Institute of Nuclear Physics PAN, Krakow, Poland
Bibliografia
  • [1] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving G., Isard M., et al.: Tensorow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI'16), pp. 265-283. 2016.
  • [2] Abbiendi G., al.: Measuring the leading hadronic contribution to the muon g -2 via me scattering. European Physical Journal C, vol. 77, p. 139, 2017.
  • [3] Bishop C.M.: Mixture density networks, 1994. https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf
  • [4] Brun R., Rademakers F.: ROOT: An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 389 (1-2), pp. 81-86, 1997. http://dx.doi.org/10. 1016/S0168-9002(97)00048-X.
  • [5] Calafiura P.: HEP advanced tracking algorithms with cross-cutting applications (Project HEP.TrkX). https://heptrkx.github.io/.
  • [6] Chollet F., et al.: Keras: Deep learning library for theano and tensorow, 2015. https://keras.io/.
  • [7] Farrell S., Anderson D., Calafiura P., Cerati G., Gray L., Kowalkowski J., Mudigonda M., Spentzouris P., Spiropoulou M., Tsaris A., et al.: The HEP. TrkX Project: deep neural networks for HL-LHC online and offline tracking. EPJ Web of Conferences, vol. 150, p. 00003. EDP Sciences, 2017.
  • [8] Farrell S., Calafiura P., Mudigonda M., Anderson D., Vlimant J.R., Zheng S., Bendavid J., Spiropulu M., Cerati G., Gray L., Kowalkowski J., Spentzouris P., Tsaris A.: Novel deep learning methods for track reconstruction. In: arXiv preprint arXiv:1810.06111, 2018.
  • [9] Fruhwirth R.: Application of Kalman filtering to track and vertex fitting. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 262(2-3), pp. 444-450, 1987.
  • [10] Graves A., Wayne G., Danihelka I.: Neural Turing Machines. In: arXiv preprint arXiv:1410.5401, 2014.
  • [11] Hochreiter S., Schmidhuber J.: Long short-term memory. Neural Computation, vol. 9(8), pp. 1735-1780, 1997.
  • [12] James F., Roos M.: Minuit - a system for function minimization and analysis of the parameter errors and corrections. Computer Physics Communications, vol. 10(6), pp. 343-367, 1975. https://doi.org/10.1016/0010-4655(75)90039-9.
  • [13] Keras LSTM tutorial. https://adventuresinmachinelearning.com/ keras-lstm-tutorial/.
  • [14] Kingma D.P., Ba J.: Adam: A method for stochastic optimization. In: arXiv preprint arXiv:1412.6980, 2014.
  • [15] LeCun Y., Bengio Y., Hinton G.: Deep learning. Nature, vol. 521(7553), p. 436, 2015.
  • [16] Motulsky H.J., Brown R.E.: Detecting outliers when fitting data with nonlinear regression{a new method based on robust nonlinear regression and the false discovery rate, BMC Bioinformatics, vol. 7(1), p. 123, 2006.
  • [17] Neal R.M.: Bayesian learning for neural networks, vol. 118. Springer Science & Business Media, 2012.
  • [18] Pearl J.: Markov and Bayesian Networks, chap. 3 Probabilistic Reasoning in Intelligent Systems, 1988.
  • [19] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.: Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, vol. 15(1), pp. 1929-1958, 2014.
  • [20] Vinyals O., Toshev A., Bengio S., Erhan D.: Show and tell: A neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156-3164. 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58765cce-de25-4f68-9bfa-2b3ee5d63aea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.