PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gold nano-elliptic arrays used in plasmonic waveguides in near infrared spectrum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigated plasmonic waveguides in near infrared spectrum, especially at original (λ = 1310 nm) and also communication bands (λ = 1550 nm) using gold nano-elliptic rings. It is possible to shift localized surface plasmon resonance, by appropriate geometrical properties, to the desired wavelength. Three-dimensional simulations utilizing the finite-difference time-domain algorithm are used to determine the set of geometrical parameters of gold nano-elliptic rings for exciting localized surface plasmon resonance at 1310 and 1550 nm. Employing different configurations of gold nano-elliptic rings chains, waveguides are designed, with–3 dB transmission loss coefficients and group velocities calculations for different modes. In comparison with circular nanorings, elliptic rings showed better characteristics, such as high electric field enhancements and low loss transmission coefficients.
Czasopismo
Rocznik
Strony
489--497
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Tabriz, Faculty of Electrical and Computer Engineering, Tabriz, Iran
autor
  • University of Tabriz, Faculty of Electrical and Computer Engineering, Tabriz, Iran
autor
  • University of Tabriz, School of Engineering Emerging Technologies, Tabriz, Iran
Bibliografia
  • [1] CHIA-YANG TSAI, JYUN-WEI LIN, CHE-YAO WU, PIN-TSO LIN, TSAN-WEN LU, PO-TSUNG LEE, Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode, Nano Letters 12(3), 2012, pp. 1648–1654.
  • [2] SALEH B.E., TEICH M.C., SALEH B.E., Fundamentals of Photonics, Vol. 22, Wiley, New York, 1991.
  • [3] RAETHER H., Surface Plasmons on Smooth Surfaces, Springer, 1988.
  • [4] KREIBIG U., VOLLMER M., Theoretical Considerations in Optical Properties of Metal Clusters, Springer, 1995.
  • [5] JUNG K.-Y., TEIXEIRA F.L., REANO R.M., Au/SiO2 nanoring plasmon waveguides at optical communication band, Journal of Lightwave Technology 25(9), 2007, pp. 2757–2765.
  • [6] MAIER S.A., Plasmonics: Fundamentals and Applications, Springer Science and Business Media, 2007.
  • [7] BARNES W.L., DEREUX A., EBBESEN T.W., Surface plasmon subwavelength optics, Nature 424(6950), 2003, pp. 824–830.
  • [8] OZBAY E., Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311(5758), 2006, pp. 189–193.
  • [9] AIZPURUA J., BRYANT G.W., RICHTER L.J., GARCÍA DE ABAJO F.J., KELLEY B.K., MALLOUK T., Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Physical Review B 71(23), 2005, article ID 235420.
  • [10] GOPINATH A., BORISKINA S.V., RANJITH PREMASIRI W., ZIEGLER L., REINHARD B.M., DAL NEGRO L. Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing, Nano Letters 9(11), 2009, pp. 3922–3929.
  • [11] THEISS J., PAVASKAR P., ECHTERNACH P.M., MULLER R.E., CRONIN S.B., Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates, Nano Letters 10(8), 2010, pp. 2749–2754.
  • [12] TRIPATHY S., MARTY R., LIN V.K., SIEW LANG TEO, ENYI YE, ARBOUET A., SAVIOT L., GIRARD C., MING YONG HAN, MLAYAH A., Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers, Nano Letters 11(2), 2011, pp. 431–437.
  • [13] JUAN M.L., RIGHINI M., QUIDANT R., Plasmon nano-optical tweezers, Nature Photonics 5(6), 2011, pp. 349–356.
  • [14] WURTZ G.A., POLLARD R., HENDREN W., WIEDERRECHT G.P., GOSZTOLA D.J., PODOLSKIY V.A., ZAYAT A.V., Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality, Nature Nanotechnology 6(2), 2011, pp. 107–111.
  • [15] LAL S., LINK S., HALAS N.J., Nano-optics from sensing to waveguiding, Nature Photonics 1(11), 2007, pp. 641–648.
  • [16] SEUNG YONG LEE, LING HUNG, LANG G.S., CORNETT J.E., MAYERGOYZ I.D., RABIN O., Dispersion in the SERS enhancement with silver nanocube dimers, ACS Nano 4(10), 2010, pp. 5763–5772.
  • [17] PASQUALE A.J., REINHARD B.M., NEGRO L.D., Engineering photonic–plasmonic coupling in metal nanoparticle necklaces, ACS Nano 5(8), 2011, pp. 6578–6585.
  • [18] LINLIN WU, CHUNSHENG SHI, LIANGFEI TIAN, JIN ZHU, A one-pot method to prepare gold nanoparticle chains with chitosan, The Journal of Physical Chemistry C 112(2), 2008, pp. 319–323.
  • [19] HAO E., SCHATZ G.C., Electromagnetic fields around silver nanoparticles and dimers, The Journal of Chemical Physics 120(1), 2004, pp. 357–366.
  • [20] FENG HAO, LARSSON E.M., ALI T.A., SUTHERLAND D.S., NORDLANDER P., Shedding light on dark plasmons in gold nanorings, Chemical Physics Letters 458(4–6), 2008, pp. 262–266.
  • [21] AIZPURUA J., HANARP P., SUTHERLAND D.S., KÄLL M., BRYANT G.W., GARCÍA DE ABAJO F.J., Optical properties of gold nanorings, Physical Review Letters 90(5), 2003, article ID 057401.
  • [22] RAYFORD C.E., SCHATZ G., SHUFORD K., Optical properties of gold nanospheres, Nanoscape 2(1), 2005, pp. 27–33.
  • [23] STOLERU V., TOWE E., Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices, Applied Physics Letters 85(22), 2004, pp. 5152–5154.
  • [24] MAIER S.A., BRONGERSMA M.L., KIK P.G., MELTZER S., REQUICHA A.A.G., KOEL B.E., ATWATER H.A., Plasmonics—A route to nanoscale optical devices (Advanced Materials, 2001, 13, 1501), Advanced Materials 15(7–8), 2003, pp. 562–562.
  • [25] QUINTEN M., LEITNER A., KRENN J.R., AUSSENEGG F.R., Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters 23(17), 1998, pp. 1331–1333.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58702e3a-62f2-4a0c-addc-0b3fde468649
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.