PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Protein release from different forms of polylactide and alginate composite carriers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of composite biomaterials constituting both a porous scaffold for filling tissue defects (especially bone tissue) and a carrier of biologically active substances (proteins) is an innovative approach of the presented research. The paper presents the following studies of obtained composites: model protein (bovine serum albumin, BSA) release, changes in microstructure during incubation and bioactive potential in a simulated biological environment (based on scanning electron microscopy with X-ray microanalysis – SEM/EDS – and infrared spectroscopy – FTIR). Three types of composites with a poly(L-lactide) matrix PLLA were investigated. PLA fibres covered with silica-calcium sol, calcium alginate fibres and calcium alginate beads were used as modifiers of the PLA matrix and carriers of protein. Process of releasing albumin proceeded differently depending on the material and form of the carrier. In the case of calcium alginate fibres, almost all protein was released within 14 days. For the remaining materials, this amount was reached after 3 weeks. All tested composites showed bioactive potential connected with apatite precipitation during incubation in a simulated biological environment. However, coating PLA fibres with silica-calcium sol significantly increased this effect. The highest cell viability was observed for a biomaterial modified by calcium alginate beads.
Rocznik
Strony
2--10
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., zdj.
Twórcy
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Dorogin J., Townsend J.M., Hettiaratchi M.H.: Biomaterials for protein delivery for complex tissue healing responses. Biomaterials Science 9 (2021) 2339-2361. http://doi.org/10.1039/d0bm01804j
  • [2] Echeverria Molina M.I., Malollari K.G., Komvopoulos K.: Design challenges in polymeric scaffolds for tissue engineering. Frontiers in Bioengineering and Biotechnology 9 (2021) 617141. http://doi.org/10.3389/fbioe.2021.617141
  • [3] Zhao D., Zhu T., Li J., Cui L., Zhang Z., Zhuang, X., Ding J.: Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioactive Materials 6 (2021) 346-360. http://doi.org/10.1016/j.bioactmat.2020.08.016
  • [4] Sheng Y., Gao J., Yin Z.Z., Kang J., Kong Y.: Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydrate Polymers 269 (2021) 118325. http://doi.org/10.1016/j.carbpol.2021.118325
  • [5] Li H., Li P., Yang Z., Gao C., Fu L., Liao Z., Zhao T., et al.: Meniscal regenerative scaffolds based on biopolymers and polymers: Recent Status and Applications. Frontiers in Cell and Developmental Biology 9 (2021) 661802. http://doi.org/10.3389/fcell.2021.661802
  • [6] Pakulska M.M., Donaghue I.E., Obermeyer J.M., Tuladhar A., McLaughlin C.K., Shendruk T.N., Shoichet M.S.: Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Science Advances 2 (2016) e1600519. http://doi.org/10.1126/sciadv.1600519
  • [7] Yao B., Ni C., Xiong C., Zhu C., Huang B.: Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess and Biosystems Engineering 33:4 33 (2009) 457-463. http://doi.org/10.1007/S00449-009-0349-2
  • [8] Lee B.K., Yun Y., Park K.: PLA micro- and nano-particles. Advanced Drug Delivery Reviews 107 (2016) 176. http://doi.org/10.1016/j.addr.2016.05.020
  • [9] Brzeziński M., Wedepohl S., Kost B., Calderón M.: Nanoparticles- from supramolecular polylactides overcome drug resistance of cancer cells. European Polymer Journal 109 (2018) 117-123. http://doi.org/10.1016/J.EURPOLYMJ.2018.08.060
  • [10] Marincaș L., Farkas N.I., Barbu-Tudoran L., Barabás R., Toşa M.I.: Deep eutectic solvent PCL-based nanofibers as drug delivery system. Materials Chemistry and Physics 304 (2023) 127862. http://doi.org/10.1016/J.MATCHEMPHYS.2023.127862
  • [11] Li J., Ding J., Liu T., Liu J.F., Yan L., Chen X.: Poly(lactic acid) controlled drug delivery. In Industrial Applications of Poly(lactic acid). Advances in Polymer Science; Di Lorenzo, M., Androsch, R., Eds.; Springer: New York (2017); Vol. 282, pp. 109-138.
  • [12] Liu S., Qin S., He M., Zhou D., Qin Q., Wang H.: Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Composites Part B: Engineering 199 (2020) 108238. http://doi.org/10.1016/j.compositesb.2020.108238
  • [13] Sharma S., Gupta V., Mudgal D.: Experimental investigations on polydopamine coated poly lactic acid based biomaterial fabricated using 3D printing for orthopedic applications. Materials Chemistry and Physics 310 (2023) 128473. http://doi.org/10.1016/J.MATCHEMPHYS.2023.128473
  • [14] Pyza M., Brzezińska N., Kulińska K., Gabor J., Barylski A., Aniołek K., et al.: Polylactide-based composite materials for 3D printing and medical applications - the effect of basalt and silicon dioxide addition. Engineering of Biomaterials 166 (2022) 29-39. http://doi.org/10.34821/eng.biomat.166.2022.29-39
  • [15] Senatov F.S., Zadorozhnyy M.Y., Niaza K.V., Medvedev V.V., Kaloshkin S.D., Anisimova N.Y., Kiselevskiy M.V., Yang K.C.: Shape memory effect in 3D-printed scaffolds for self-fitting implants. European Polymer Journal 93 (2017) 222-231. http://doi.org/10.1016/J.EURPOLYMJ.2017.06.011
  • [16] Kumawat V.S., Bandyopadhyay-Ghosh S., Ghosh S.B.: Rationally designed biomimetic bone scaffolds with hierarchical porous-architecture: Microstructure and mechanical performance. Express Polymer Letters 17 (2023) 610-624. http://doi.org/10.3144/expresspolymlett.2023.45
  • [17] Gryń K.: Long-term mechanical testing of multifunctional composite fixation miniplates. Engineering of Biomaterials 157 (2020) 20-25. http://doi.org/10.34821/eng.biomat.157.2020.20-25
  • [18] Yadav P., Yadav B.: Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/ peptide-based drug delivery system. Future Journal of Pharmaceutical Sciences 7 (2021) 200. http://doi.org/10.1186/s43094-021-00345-w
  • [19] Norudin N.S., Mohamed H.N., Yahya N.A.M.: Controlled released alginate-inulin hydrogel: Development and in-vitro characterization. AIP Conference Proceedings 2016 (2018) 20113. http://doi.org/10.1063/1.5055515
  • [20] Yang Z., Cui Y., Zhang Y., Liu P., Zhang Q., Zhang B.: Identification of imprinted sites by fluorescence detection method based on reversible dynamic bond modified template protein. Composites Part B: Engineering 223 (2021) 109154. http://doi.org/10.1016/j.compositesb.2021.109154
  • [21] Morawska-Chochół A.: Manufacturing of resorbable composite biomaterials containing protein. Materials and Manufacturing Processes 37 (2022) 782-791. http://doi.org/10.1080/10426914.2021.2001508
  • [22] Tang L., Chen Y.H., Wang Q., Wang X.H., Wu Q.X., Ding Z.F.: Microencapsulation of functional ovalbumin and bovine serum albumin with polylysine-alginate complex for sustained protein vehicle’s development. Food Chemistry 368 (2022) 130902. http://doi.org/10.1016/j.foodchem.2021.130902
  • [23] Noble J.E.: Quantification of protein concentration using UV absorbance and Coomassie dyes. Methods in Enzymology 536 (2014) 17-26. http://doi.org/10.1016/B978-0-12-420070-8.00002-7
  • [24] Ilyas R.A., Sapuan S.M., Harussani M.M., Hakimi M.Y.A.Y., Haziq M.Z.M., Atikah M.S.N., Asyraf M.R.M., Ishak M.R., Razman M.R., Nurazzi N.M., Norrrahim M.N.F., Abral H., Asrofi M.: Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers 13 (2021) 1326. http://doi.org/10.3390/polym13081326
  • [25] Amini M., Khavandi A.: Degradation of polymer-based composites in corrosive media: experimental attempts towards underlying mechanisms. Mechanics of Time-Dependent Materials 23 (2019) 153-172. http://doi.org/10.1007/S11043-018-09408-7
  • [26] Nochos A., Douroumis D., Bouropoulos N.: In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydrate Polymers 74 (2008) 451-457. http://doi.org/10.1016/j.carbpol.2008.03.020
  • [27] Wells L.A., Sheardown H.: Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. European Journal of Pharmaceutics and Biopharmaceutics 65 (2007) 329-335. http://doi.org/10.1016/j.ejpb.2006.10.018
  • [28] Ko C.L., Wu H.Y., Lin Y.S., Yang C.H., Chen J.C., Chen W.C.: Modulating the release of proteins from aloaded carrier of alginate/gelatin porous spheres immersed in different solutions. Bio-Medical Materials and Engineering 28 (2017) 515-529. http://doi.org/10.3233/BME-171690
  • [29] Abifarin J.K., Obada D.O., Dauda E.T., Dodoo-Arhin D.: Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in Brief 26 (2019) 104485. http://doi.org/10.1016/j.dib.2019.104485
  • [30] Chłopek J., Morawska-Chochół A., Szaraniec B.: The influence of the environment on the degradation of polylactides and their composites. Journal of Achievements in Materials and Manufacturing Engineering 43 (2010) 72-79. https://api.semanticscholar.org/CorpusID:137640086
  • [31] Boguń M., Krucińska I., Kommisarczyk A., Mikołajczyk T., Błażewicz M., Stodolak-Zych E., Menaszek E., ŚcisłowskaCzarnecka A.: Fibrous polymeric composites based on alginate fibres and fibres made of poly-ε-caprolactone and dibutyryl chitin for use in regenerative medicine. Molecules 18 (2013) 3118-3136. http://doi.org/10.3390/molecules18033118
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58701d40-f7a6-435d-b04b-ffae5460fb01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.