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gorithms require data from highly precise sensors, 
such as laser scanners [28], or have high computing 
power demands, if less precise data (e.g. from pas-
sive cameras) are used [8]. Thus, the SLAM approach 
is rather unsuitable for small mobile robots, such like 
our SanBot [19], which have quite limited resources 
with respect to on-board sensing, computing power, 
and communication bandwidth. Thus, for such a robot 
an approach to self-localization that does not need to 
construct a map of the environment, or uses a simple 
and easy to survey representation of the known area 
is required. Moreover, the self-localization system 
should use data from compact and low-cost sensors.

In the context of navigation CCD/CMOS cameras 
are the most compact and low-cost sensors for mobile 
robots [6]. However, most of the passive vision-based 
localization methods fail under natural environmen-
tal conditions, due to occlusions, shadows, changing 
illumination, etc. Therefore, in practical applications 
of mobile robots artificial landmarks are commonly 
employed. They are objects purposefully placed in 
the environment, such as visual patterns or reflect-
ing tapes. Landmarks enhance the efficiency and ro-
bustness of vision-based self-localization [29]. It was 
also demonstrated that simple artificial landmarks 
are a valuable extension to visual SLAM [3]. An obvi-
ous disadvantage is that the environment has to be 
engineered. This problem can be alleviated by using 
simple, cheap, expendable and unobtrusive markers, 
which can be easily attached to walls and various ob-
jects. In this research we employ simple landmarks 
printed in black and white that are based on the ma-
trix QR (Quick Response) codes commonly used to 
recognize packages and other goods.

In our recent work [21] we evaluated the QR code 
landmarks as self-localization aids in two very differ-
ent configurations of the camera-based perception 
system: an overhead camera that observed a land-
mark attached on top of a mobile robot, and a front-
view camera attached to a robot, which observed 
landmarks freely placed in the environment. Both so-
lutions enable to localize the robot in real-time with 
a sufficient accuracy, but both have important practi-
cal drawbacks. The overhead camera provides inex-
pensive means to localize a group of few small mobile 
robots in a desktop application, but cannot be easily 
scaled up for larger mobile robots operating in a real 
environment. The front-view camera with on-board 
image processing is a self-contained solution for self-
localization, which enables the robot to work autono-
mously, making it independent from possible com-
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surements of the landmark position over extended dis-
tances. The passive landmarks are based on QR codes, 
which makes possible to easily include in the landmark 
pattern additional information relevant for navigation. 
We present evaluation of the positioning accuracy of the 
system mounted on a SanBot Mk II mobile robot. The ex-
perimental results demonstrate that the hybrid field of 
view vision system and the QR code landmarks enable 
the small mobile robot to navigate safely along extended 
paths in a typical home environment.
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1. Introduction
An important requirement for any mobile robot is 

to figure out where it is within its environment. The 
pose of a wheeled robot (position and orientation 
xR = [xR yR θR]T) can be estimated by means of odom-
etry, but this method alone is insufficient [27], and the 
pose has to be corrected using measurements from 
external sensors. Although there are many approach-
es to self-localization known from the literature, now-
adays the Simultaneous Localization and Mapping 
(SLAM) is considered the state-of-the-art approach to 
obtain information about the robot pose [7].

The SLAM algorithms estimate from the sensory 
measurements both the robot pose and the environ-
ment map, thus they do not need a predefined map 
of the workspace. This is an important advantage, 
because obtaining a map of the environment that is 
suitable for self-localization is often a tedious and 
time-consuming task. However, the known SLAM al-
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munication problems. However, the landmarks are 
detectable and decodable only over a limited range 
of viewing configurations. Thus, the robot has to turn 
the front-mounted camera towards the area of land-
mark location before it starts to acquire an image. In 
a complicated environment, with possible occlusions 
this approach may lead to a lot of unnecessary mo-
tion. Eventually, the robot can get lost if it cannot find 
a landmark before the odometry drifts too much.

In this paper we propose an approach that com-
bines to some extent the advantages of the overhead 
camera and the front-view camera for self-localiza-
tion with passive landmarks, avoiding the aforemen-
tioned problems. We designed an affordable hybrid 
field of view vision system, which takes inspiration 
from nature, and resembles the peripheral and foveal 
vision in animals. The system consists of a low-cost 
omnidirectional camera and a typical, front-view 
camera. The omnidirectional component, employing 
an upward-looking camera and a profiled mirror pro-
vides to the robot an analogy of the peripheral vision 
in animals. It gives the robot the ability to quickly de-
tect interesting objects over a large field of view. In 
contrast, the front-view camera provides an analog of 
foveal vision. The robot can focus on details of already 
detected objects in a much narrower field of view. 
The cooperation of these two subsystems enables to 
track in real-time many landmarks located in the en-
vironment, without the need to move the robot plat-
form, whereas it is still possible to precisely measure 
the distances and viewing angle to the already found 
landmarks.

The reminder of this paper is organized as follows: 
In the next Section we analyze the most relevant re-
lated work. Section 3 introduces the concept and de-
sign of the hybrid vision system, whereas the land-
marks based on QR codes and the image processing 
algorithms used in self-localization are described in 
Section 4. The experimental results are presented in 
Section 5. Section 6 concludes the paper and presents 
an outlook of further research.

2. Related Work
The advantages of biologically-inspired vision for 

robot self-localization have been demonstrated in 
few papers – for instance Siagnian and Itti [25] have 
shown that extracting the “gist” of a scene to produce 
a coarse localization hypothesis, and then refining 
this hypothesis by locating salient landmark points 
enables the Monte-Carlo localization algorithm to 
work robustly in various indoor/outdoor scenarios. 
However, in this work both the global and the local 
characteristics of the scene were extracted from typi-
cal perspective-view images. One example of a system 
that is more similar to our approach and mimics the 
cooperation between the peripheral vision and the fo-
veal vision in humans is given by Menegatti and Pag-
ello [16]. They investigate cooperation between an 
omnidirectional camera and a perspective-view cam-
era in the framework of a distributed vision system, 
with the RoboCup Soccer as the target applications. 
Only simple geometric and color features of the scene 
are considered in this system. An integrated, self-con-

tained hybrid field of view vision system called HOPS 
(Hybrid Omnidirectional Pin-hole Sensor), which is 
quite similar in concept to our design is presented in 
[5], where the calibration procedure is described that 
enables to use this sensor for 3D measurements of 
the scene. Unfortunately, [5] gives no real application 
examples. Also Adorni et al. [1] describe the use of 
a combined peripheral/foveal vision system including 
an omnidirectional camera in the context of mobile 
robot navigation. Their system uses both cameras in 
a stereo vision setup and implements obstacle detec-
tion and avoidance, but not self-localization.

Although the bioinspired vision solutions in mo-
bile robot navigation mostly extract natural salient 
features, in many practical applications artificial 
landmarks are employed in order to simplify and 
speed-up the image processing and to make the de-
tection and recognition of features more reliable [15]. 
Visual self-localization algorithms are susceptible to 
errors due to unpredictable changes in the environ-
ment [11], and require much computing power to 
process natural features, e.g. by employing local vi-
sual descriptors [24]. The need to circumvent these 
problems in a small mobile robot that is used for edu-
cation and requires reliable self-localization, offering 
only limited computing resources motivated us to 
enhance the scene by artificial landmarks. Although 
active beacons can be employed, such like infra-red 
LEDs [27], most of the artificial visual landmarks are 
passive. This greatly simplifies deployment of the 
markers and makes them independent of any power 
source. Depending on the robot application and the 
characteristics of the operational environment very 
different designs of passive landmarks have been pro-
posed [9, 22]. In general, simple geometric shapes can 
be quickly extracted from the images, particularly if 
they are enhanced by color [3]. A disadvantage of such 
simple landmarks is that only very limited informa-
tion (usually only the landmark ID) can be embedded 
in the pattern. In contrast, employing in landmark de-
sign the idea of barcode, either one-dimensional [4] 
or two-dimensional [12] makes it possible to easily 
encode additional information. In particular, matrix 
codes, that proliferated recently due to their use in 
smartphone-based applications enable to fabricate 
much more information-rich landmarks. Moreover, 
landmarks based on matrix codes are robust to partial 
occlusion or damage of the content. Landmarks based 
on matrix codes are unobtrusive – their size can be 
adapted to the requirements of particular application 
and environment. As they are monochromatic, they 
can be produced in a color matching the surroundings, 
partially blending into the environment. The robotics 
and computer vision literature provides examples of 
successful applications of QR codes for mobile robot 
self-localization. Introducing QR codes into the envi-
ronment has improved the robustness and accuracy 
of the 3D-vision-based Monte Carlo self-localization 
algorithm in a dynamic environment as demonstrated 
in [14]. The information-carrying capability of matrix 
codes can be efficiently used for self-localization and 
communication in a system of many mobile robots 
[18] and in an intelligent home space for service robot 
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[13]. An applicability of QR codes for navigation and 
object labelling has been also demonstrated in [10] 
on the NAO humanoid robot.

3. Hybrid Field of View Vision System
3.1. Concept and Components

Most of the mobile robots that employ vision for 
navigation use typical perspective cameras. A per-
spective camera can observe landmarks located at 
relatively large distances and positioned arbitrary in 
the environment within the camera’s horizontal field 
of view. The distance to the robot and orientation of 
the landmark can be calculated from a single image 
taken by the perspective camera. Due to practical 
considerations, working indoors we assume that the 
landmarks are attached to vertical surfaces, such as 
walls that dominate man-made environments. Thus, 
we consider only the angle α between the camera’s 
optical axis and the normal to the landmark’s plane 
in 2D (Fig. 1) In the same camera coordinates the 
position of the landmark is defined by the distance 
zy measured along the camera’s optical axis, which is 
assumed to be coincident with the robot’s yR axis, and 
the distance d in the robot’s xR axis, computed as the 
offset between the center of the image (i.e. the optical 
axis) and the center of the landmark. The distance at 
which the landmark can be detected and recognized 
depends on the camera resolution and the physical 
size of the landmark [21]. The information about the 
actual landmark size, as well as the position and ori-
entation in the global reference frame xL = [xL yL θL]T 
is encoded in the QR code of the landmark itself, so 
the robot doesn’t need to keep a map of known land-
marks in the memory. Therefore, if at least one land-
mark can be recognized and decoded, the position of 
the robot and its orientation can be computed. How-
ever, in order to find landmarks in the surroundings, 
the robot has to constantly change its heading, which 
is inconvenient.

Fig. 1. Geometry of landmark measurements by using 
the perspective camera

The omnidirectional subsystem combines a stan-
dard upward-looking camera with an axially sym-
metric mirror located above this camera and provides 
360ᵒ field of view in the horizontal plane. This type 
of omnidirectional sensor is called catadioptric [23] 
and can be implemented using mirrors of different 

vertical profiles: parabolic, hyperbolic, or elliptical. 
The omnidirectional sensor used in this research has 
been designed and built within a project run by stu-
dents, which imposed limitations as to the costs and 
the used technology. The mirror has been fabricated 
in a workshop from a single piece of aluminium using 
a simple milling machine, which limited the achiev-
able curvature of the profile. Thus, a mirror of coni-
cal shape with a rounded, parabolic tip was designed 
(Fig. 2). This profile could be fabricated at acceptable 
cost using typical workshop equipment. The mirror is 
hold by a highly transparent acrylic tube over the lens 
of an upward-looking webcam.

Fig. 2. Conical mirror: a – design of the conical mirror 
with rounded tip for the omnidirectional vision sensor, 
b – the fabricated mirror

Omnidirectional camera images represent geo-
metrically distorted environment such as: straight 
lines are arcs, squares are rectangles. For this reason 
it is difficult to find characteristic elements which are 
needed in the localization process. It is therefore nec-
essary to transform images using the single effective 
viewpoint [26]. Unfortunately, the chosen shape of 
the mirror makes it hard to achieve the single effec-
tive viewpoint property in the sensor. While for hy-
perbolic or elliptical mirrors this is simply achieved 
by placing the camera lens at a proper distance from 
the mirror (at one of the foci of the hyperbola/el-
lipse), for a parabolic mirror, an orthographic lens 
must be interposed between the mirror and the 
camera [2]. This was impossible in the simple design 
sensor which uses a fixed-lens webcam as the cam-
era. Therefore, it is impossible to rectify the images 
captured by our omnidirectional camera to geometri-
cally correct planar perspective images [26]. While 
the captured pictures may be mapped to flat pan-
oramic images covering the 360ᵒ field of view, these 
images are still distorted along their vertical axis, i.e. 
they do not map correctly all the distances between 
the objects and the sensor into the vertical pixel lo-
cations. However, there are no distortions along the 
horizontal axis, which allows to recover the angular 
location of the observed objects with respect to the 
sensor. In the context of landmark-based positioning 
it means that while the landmarks can be detected in 
the omnidirectional images, only their angular loca-
tions, but not the distances with respect to the robot 
can be determined precisely, particularly for more 
distant landmarks. Moreover, the internal content of 
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the landmark (QR code) cannot be decoded reliably 
from the distorted images. Eventually, while the omni-
directional camera is capable of observing the whole 
proximity of the robot without unnecessary motion, 
it requires high computing power to rectify the whole 
images, still giving no guarantee that the geomet-
ric measurements of landmark positions are precise 
enough for self-localization.

Fig. 3. Exemplary view from the omnidirectional vision 
component with artificial landmarks in the field of view

The aforementioned properties and limitations of 
the two camera subsystems resemble the character-
istics of the foveal and peripheral vision in animals. 
This provides a strong argumentation to combine 
both systems. If the perspective view camera and the 
omnidirectional camera subsystems are coupled for 
landmark perception their drawbacks can be mutual-
ly compensated to a great extent. The omnidirectional 
camera can provide 360ᵒ view with detection of land-
marks, and then guide the perspective camera to the 
angular coordinates of the found landmarks. The per-
spective camera can be pointed directly to the land-
mark at the known angular coordinates, and then can 

precisely measure its location and read the QR code. It 
should be noted, that in this cooperation scheme nei-
ther full rectification of the omnidirectional images or 
the perspective correction in the front-view camera 
images are needed, which significantly decreases the 
required computing power.

3.2. Experimental System on the Mobile Robot
The experimental mobile robot with the hybrid 

field of view vision system is shown in Fig. 4. It is 
based on the small, differential-drive mobile plat-
form SanBot Mk II [19]. The robot is equipped with 
the front-view camera and the omnidirectional  
camera. 

The front-view camera is mounted directly to 
the upper plate of the robot’s chassis. It is a Logitech 
500 webcam, providing images at the resolution of 
1280x1024. The Microsoft LifeCam webcam is used in 
the omnidirectional sensor. This particular camera has 
been chosen due to its compact size, high resolution 
(1280x720), and an easy to use API. The mirror has 
the diameter of 6 cm, and is located 11 cm above the 
camera lens. The omnidirectional camera is positioned 
precisely above the front-view camera. Both cameras 
stream images at 15 FPS through the USB interface.

In the current experimental setup image process-
ing takes place on a notebook PC. The simple control-
ler board of the SanBot robot receives only the calcu-
lated positions of the landmarks that are necessary to 
compute the motion commands. These data are trans-
ferred via a serial (COM) port. The robot schedules 
the sequence of motions to execute in order to follow 
the planned path. The robot stops for a moment when 
taking images, and then obtains the outcome of cal-
culations related to landmark-based self-localization.

4. Landmarks and Self-localization
4.1. Passive Landmarks with Matrix Codes

There are many possibilities to design a passive 
landmark, but if a CCD/CMOS camera has to be used 
as the sensor, the landmark should have the following 
basic properties:
• should be recognizable and decodable over a wide 

range of viewing ranges and angles;
• should be easily recognizable under changing 

environment conditions (e.g. variable lighting, 
partial occlusions);

• its geometry should allow easy and quick 
extraction from an image;

• it should be easy to prepare, preferably printable 
in one color;

• it should be unique within the robot’s working 
area, e.g. by containing an encoded ID.
For the small mobile robot positioning we formu-

late a further requirement related to the limited com-
puting power of the system: the landmarks should be 
able to carry additional information related to self-lo-
calization and navigation, such like the position of the 
landmark in the global frame, object labels or guid-
ance hints. Such information easily and robustly de-
codable from the landmark’s image helps the robot to 
navigate without building a map of the environment 
in memory.

Fig. 4. SanBot Mk II with the hybrid field of view vision 
system: CAD drawing (a), and a photo of assembled ro-
bot (b)+
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All of the above-listed requirements are met by 
matrix codes. In our previous work [20] we have ex-
perimentally evaluated four types of commercially 
used matrix codes as candidates for landmarks. The 
results revealed that among these code types, the 
most suitable for navigation are the QR codes. The 
QR codes contain three marker positions (upper left, 
upper right and lower left), which are additionally 
separated from the data with white frame. This pat-
tern allows easily recovering the code orientation. 
Comparing to other considered variants the QR code 
is also characterized by large size of a single module 
(i.e. white/black cell). This is an important advantage, 
which ensures proper measurements, even for long 
distances. In addition, QR codes are capable of partial 
error correction if they are damaged or occluded.

Fig. 5. Exemplary QR code based landmark: QR code 
encoding value ‘1’ (a), 16.5x16.5 cm landmark with 
frame (b), recognized landmark in the environment (c)

As a result, our landmark is designed around 
a standard QR code, which is placed in the center. 
The code is encompassed with a black frame, which 
is used for initial sorting of landmark candidates on 
images and for reducing the number of potential ob-
jects, which can be subject to decoding and further 
processing. Landmarks are monochromatic (usually 
black-and-white), because they should be extremely 
low-cost and printable on any material, not only pa-
per. An example of a QR code, in which the ID ’1’ has 
been encoded, is shown in Fig. 5a. A complete land-
mark with the added black frame is depicted in Fig. 
5b. The same landmark, recognized and decoded in 
the environment is shown in Fig. 5c.

The program processing the data from both cam-
eras has been created using C# programming lan-
guage and Microsoft Visual Studio 2010. The basic 
image processing part, leading to conversion of the 
omnidirectional images, extraction of landmark can-
didates from these images, and computation of the 
geometric measurements is implemented with the 
EmguCV library [30], which is a C# port of the well-
known OpenCV. The decoding of extracted QR codes is 
accomplished using the specialized MessagingToolkit 
library [32].

4.2.  Localization of Landmarks on Perspective 
Camera Images

We assume that landmarks are mounted on rigid 
surfaces, so that they will not bend, deforming the 
square frames. Thus, the images from the perspective 
view camera are assumed to be not distorted. The al-
gorithm of recognition and localization of landmarks 
observed by the perspective view camera is shown in 
Fig. 6. The image processing begins with acquiring im-
ages from the front-view camera. The images are fil-
trated, and then the thick frames around the QR code 
are searched for by extracting candidate rectangles.

If the surface of a landmark is roughly parallel to 
the camera sensor’s surface, there is no perspective 
deformation of the QR code, and it can be directly pro-
cessed by the appropriate MessagingToolkit routine. 
If such a landmark is found, the distance to the robot’s 
camera is calculated. Whenever the camera’s optical 
axis intersects the center of the landmark (i.e. it is lo-
cated horizontally in the center of the image) the dis-
tance is calculated in a simple way:

 , (1)

where z is the distance between the landmark and 
the camera, f is the camera’s focal length, hL is the 
known vertical dimension (height) of the landmark, 
and hI is the observed object’s vertical dimension on 
the image. The viewing angle can be computed from 
the formula: 

 , (2)

where wL is the known horizontal dimension (width) 
of the landmark, and wI is the observed object’s hori-
zontal dimension on the image.

However, if the landmark isn’t located in the cen-
ter of the image (cf. Fig. 1), the distance between the 
camera and the landmark is calculated from the right-
angle triangle made by the distance zy measured along 
the camera’s optical axis (which is assumed to be co-
incident with the robot’s yR axis), and the distance d in 
the robot’s xR axis, computed as the offset between the 
center of the image and the center of the landmark: 

 , (3)

Fig. 6. Landmarks detection and decoding algorithm for the perspective camera
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where dp is the distance in pixels between the center 
of the image and the center of the landmark’s bound-
ing frame.

The viewing angle between the camera’s optical 
axis and the vector normal to the landmark surface is 
calculated as: 

 , (4)

where zy is the perpendicular distance from cam-
era to the landmark, and d is the distance calculated  
from (3).

Fig. 7. Spatial distribution of errors in QR code-based 
landmark localization by the perspective view camera: 
distance to landmark z errors (a), and viewing angle α 
errors (b)

However, if in the given viewing configuration of 
the perspective camera the surface of a landmark is 
not parallel to the camera’s sensor’s surface the per-
spective deformation of the landmark’s image has to 
be corrected before decoding the QR code and calcu-
lating the distances and angle from (1)–(4). In such a 
case the relation between locations of the character-
istic points (corners) in 3D and the image plane has to 
be found in order to properly calculate the landmark’s 
position and rotation. Computations of this relation 
are described in more details in [21]. We omit these 
calculations here, because such situations should not 
occur when self-localization takes place by using both 
the perspective and omnidirectional cameras, as the 
perspective camera is set to a proper angular position 
before taking an image of the landmark. Thus, the 
viewing angle of the landmark never exceeds 15ᵒ. Re-
sults of our earlier experiments [21] provide evidence 
that for such small viewing angles the correction of 

perspective brings no improvement in the landmark 
localization, while this procedure is computation in-
tensive.

Quantitative results for the measurements of an 
exemplary passive landmark (size 20x20 cm) are 
shown in Fig. 7. The landmark was observed by the 
perspective camera from distances up to 2 meters 
and for the viewing angles up to 60ᵒ. In this experi-
ment the camera was positioned in such a way that 
the optical axis always intersected the center of the 
landmark, thus the d offset was zero. As it could be 
expected, the distance measurement error grows for 
larger distances, but it grows also slightly for large 
viewing angles (Fig. 7a), which could be attributed to 
the not corrected perspective deformation. As can be 
seen from the plot in Fig. 7b the measured viewing 
angle is less precise for large and very small distances. 
This is probably caused by the procedure searching 
for the thick black frame, which for very large images 
of a landmark (small distances) occasionally finds the 
inner border of the frame instead of the outer one. 
Average precision of the measurements (over all dis-
tances and viewing angles) turned out to be 1.3 cm for 
the distance and 2ᵒ for the viewing angle.

4.3. Recognition of Landmarks on the Omnidirec-
tional Images

As described in Section 3 the low-cost omnidirec-
tional camera geometry and optics do not permit full 
rectification of the distorted images. Therefore, we 
use images from the omnidirectional camera only to 
find potential landmark candidates in the robot’s vi-
cinity, and to track the known landmarks.

At the beginning, in order to reduce the amount 
of processing information, the color image from the 
camera is transmuted into black-and-white image. 
The data processing starts by cropping and unwind-
ing the omnidirectional image. Cropping the image 
relies on selecting the part of the picture which is 
necessary for recognition of the landmarks. The un-
winding procedure is a simple cylinder unrolling. At 
the beginning the algorithm sets the height and width 
of the unrolled picture:

  

 , (5)

where R2 is the radius of outer circle, and R1 is the ra-
dius of an inner circle marked in Fig 3. Next, the algo-
rithm starts computing a new position of each pixel 
in the unrolled image. This procedure is shown in 
pseudo-code:

Listing 1. Pixel position calculation procedure
y = H - 1;
for (x = 0; x < W; x++)
{
 for (y = 0; y < H; y++)
 {
  r = (y/H) * (R2 - R1) + R1;
  theta =(x/W) * 2 * PI;
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  xs = Cx + r * Sin(theta);
  ys = Cy + r * Cos(theta);
  mapx.Data[y, x] = xs;
  mapy.Data[y, x] = ys;
  y--;
 }
 y = H - 1;
}

The two operations described above provide the 
same result for each processed image, so they are 
executed only once at the beginning of the program. 
Afterwards, the program starts the procedure of un-
winding the picture using the EmguCV cvRemap func-
tion. This function transforms the source image using 
the specified map (in our case mapx and mapy from the 
algorithm in Listing 1).

After the procedure of unwrapping the image, the 
extreme parts of the image are duplicated in the op-
posing ends in order to obtain a continuous image 
in areas where landmarks can appear. The unrolled 
image is shown in Fig. 8. This image undergoes mor-
phological erosion in order to remove noise. Next, the 
Canny operator is used to find edges on the image. 
Among the found edges those that are connected into 
rectangular shapes are selected. Then, the algorithm 
eliminates all nested rectangles – those which are 
located inside other rectangles. The found landmark 
candidates are marked on the image.

Fig. 8. Results from the omnidirectional camera a – 
cropped and unwrapped image, b – extended image, 
c – unwrapped and extended image with marked can-
didates

The viewing angle of the landmark with respect to 
the robot’s heading is calculated as:

  

 ,  (6)

  

where xs and ys define center of the landmark, W is 
width of the unwrapped image, and Wd is width of du-
plicated part of the picture.

Afterwards, the program makes a list of potential 
landmarks and relative angles. The algorithm of find-
ing and localization of landmarks in the omnidirec-
tional images is shown in Fig. 9.

4.4. Self-localization with the Hybrid System
The self-localization algorithm based on data from 

both the omnidirectional and perspective camera is 
shown in Fig: 10. At the beginning, the program pro-
cesses only an image from the omnidirectional cam-
era. If the algorithm described in Subsection 4.3 finds 
a landmark candidate at the viewing angle smaller 
than ±15ᵒ, the program starts processing the image 
from the front-view camera. This way the robot does 
not need to aim the perspective camera directly at the 
landmark, which speeds up the self-localization pro-
cess.

When the landmark is seen in the angular sector 
of ±15ᵒ, the image from the perspective camera is 
processed. The program searches for the landmark, 
decodes it and calculates robot’s position and orien-
tation in the external reference frame (cf. Fig. 1). The 
orientation of the robot θR is concatenation of the 
landmark’s orientation in the global coordinates θL, 
and robot’s orientation with regard to the landmark 
α. The orientation is calculated as: 

 , (7)

where θL′ is θL – 180ᵒ and α is the angle calculated 
from (4). The robot’s position in the global reference 
frame is calculated as: 

  

 , (8)

where xL and yL define the landmark’s position, zy 
is the perpendicular distance between the camera 
and the landmark, and d is the distance calculated 
from (3). In (8) the plus sign is used to compute the 

Fig. 9. Landmarks detection for omnidirectional camera
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position in x-axis when the landmark is located to 
the right side of the robot, and minus when it is on 
the left. At the beginning of calculations the algo-
rithm assumes that the landmark is located in front 
of the robot, and uses plus sign in (8) to compute 
the position in y-axis. But if the robot has to rotate 
180ᵒ to decode the landmark, the algorithm uses 
minus sign.

If the candidate landmark is found at a viewing 
angle larger than ±15ᵒ, the robot turns around un-
til the angle becomes smaller than ±15ᵒ. The most 
common situation is when the algorithm finds more 
than one potential landmark. In such case the robot 
turns towards the nearest landmark. Although the 
front-view camera is capable of recognizing land-
marks that are visible at the angles up to ±60ᵒ, to 
ensure robustness, the QR codes are decoded when 
they are visible at an angle at most ±15ᵒ. Images 
from the front-view camera are processed only if 
the omnidirectional camera finds a potential land-
mark. If we cannot find any landmark candidates in 
the unwrapped image, the robot does not localize 
itself, and tries to continue using the odometry.

5. Experiments and Results
In order to verify the accuracy of the landmark-

based self-localization and the usability of the 
hybrid vision system in practical scenarios, we 
have performed several experiments in a typical 
home environment.

In these experiments we used one SanBot Mk II 
equipped with the hybrid field of view vision sys-
tem. The ground truth data about the covered path 
was collected by manually measuring the robot’s 

2D position with respect to the planned path that 
was marked on the floor with scotch tape. Here 
we present the quantitative results for the longest 
path, spanning three rooms (Fig. 11). During this 
experiment, the robot covered the planned path 
ten times, which enabled us to asses the repeatabil-
ity of the measurements carried out by our vision  
system.

The test environment has seven landmarks, 
which contain their localizations and orientations 
with regard to external system of coordinates. Us-
ing only one landmark, its data and trigonometric 
relations, the robot can calculate its position. For 
this reason, landmarks in the environment are ar-
ranged so that the robot can always see at least 
one landmark. At the beginning program searches 
potential landmarks in images from the omnidi-
rectional camera. If the algorithm finds a potential 
landmark and its absolute viewing angle is less 
than ±15ᵒ, the program starts processing data from 
the front-view camera. The robot stops near a de-
tected landmark. If the algorithm finds a landmark 
candidate, but the angle is bigger than ±15ᵒ, the ro-
bot turns towards the landmark until the angle is 

Fig. 11. Robot’s path during the experiment. Small 
squares represent points, at which the robot stops and 
takes images

Fig. 10. Landmarks’ detection and decoding algorithm for the hybrid system

Tab. 1. Viewing angle determination results for the om-
nidirectional camera 

Robot stop no. α[ᵒ] αg[ᵒ] Δα[ᵒ]

1 71.98 72.00 0.02

2 -9.19 -10.00 0.81

3 10.52 9.00 1.52

4 21.33 20.00 1.33

5 4.39 5.00 0.61

6 0.35 0.00 0.35

7 -37.69 -38.00 0.31

8 -3.56 -3.00 0.56

9 -49.88 -50.00 0.12

10 -3.40 -4.00 0.60

11 47.84 50.00 2.16

12 -2.91 -3.00 0.09
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smaller than ±15ᵒ. Then, the robot updates its pose 
from the computed localization data and continues 
to the next via-point on the planned path.

In this experiment the average error of deter-
mining the position of the robot was 3 cm in x-axis, 
5 cm in y -axis, and the orientation error was 4ᵒ, 
when using the front-view camera. For the omnidi-
rectional camera the orientation error was only 1ᵒ. 
This enables to compensate the degraded orienta-
tion accuracy in the robot pose by using data from 

Tab. 2. Robot self-localization results for the hybrid system

L.
no.

xL 
[cm]

yL 
[cm]

αL 
[ᵒ]

xR 
[cm]

yR 
 [cm]

αR 
[ᵒ]

xg
R 

[cm]
yg

R 
 [cm]

αg
R 

[ᵒ]
ΔxR 

[cm]
ΔyR 

 [cm]
ΔαR 
[ᵒ]

σxR 
[cm]

σyR 
 [cm]

σαR 
[ᵒ]

1 0.00 144.00 90.00 93.90 105.86 -75.62 97.00 108.00 -65.00 3.10 2.14 10.62 2.00 3.63 9.34

2 235.00 250.00 210.00 123.86 167.89 34.28 120.00 160.00 30.00 3.86 7.89 4.28 2.55 6.97 5.06

3 120.00 442.00 180.00 112.45 282.54 0.94 110.00 288.00 5.00 2.45 5.46 4.06 1.74 4.42 3.09

4 45.00 605.00 180.00 56.75 438.32 4.77 54.00 442.00 3.00 2.75 3.68 1.77 1.35 4.08 2.98

5 -135.00 544.00 90.00 15.85 529.85 -81.30 18.00 522.00 -85.00 2.15 7.85 3.70 1.2 6.90 1.05

6 -40.00 390.00 270.00 -82.49 429.76 98.51 -78.00 434.00 98.00 4.49 4.24 0.51 3.10 5.70 1.51

7 -220.00 222.00 90.00 -125.83 245.82 -81.79 -128.00 240.00 -85.00 2.17 5.82 3.21 1.40 4.92 2.10

Fig. 12 Exemplary images of a measurement taken at 
a single robot stop: a – cropped and unwrapped image 
where the algorithm finds a potential landmark but the 
angle is larger than 15ᵒ, b – cropped and unwrapped 
image where algorithm finds a potential landmark and 
the angle is less than 15ᵒ,  c – images from the perspec-
tive camera with marked landmark

the omnidirectional system. Sample images from 
the measurements are presented in Fig. 12. Results 
for the omnidirectional camera are shown in Tab. 
1, where α denotes the measured angle and αg the 
known ground-truth angle. Final results for the 
perspective camera-based self-localization guided 
by the omnidirectional camera data are shown in 
Tab. 2, where xL,yL,αL describe the landmark posi-
tion in the global frame, xR,yR,αR denote the comput-
ed robot’s pose in the same global frame, xg

R,yg
R,αg

R 
are the ground truth coordinates of the robot, 
ΔxR,ΔyR,ΔαR define the absolute localization errors, 
and σxR,σyR,σαR the standard deviations of the local-
ization measurements. Both tables contain average 
results from 10 runs along the same path. These re-
sults demonstrate that the system based on a com-
bination of the omnidirectional camera and the per-
spective camera provides localization accuracy that 
is satisfactory for home environment navigation, 
and allows improving the results in comparison to 
a system using only the front-view camera.

6. Conclusions
This paper presents a new approach to mobile ro-

bot self-localization with passive visual landmarks. 
Owing to the hybrid field of view vision system even 
a small and simple robot can use passive vision for 
global self-localization, achieving both high accuracy 
and robustness against problems that are common 
in vision-based navigation: occlusions, limited field 
of view of the camera, and limited range of landmark 
recognition. The proposed approach enables to use 
low-cost hardware components and allows simplify-
ing the image processing by avoiding full rectification 
and geometric correction of the images. The experi-
ments conducted using a mobile robot demonstrat-
ed that the omnidirectional component can in most 
cases determine the viewing angle of a landmark with 
the accuracy better than 1ᵒ, using a partially rectified 
image. The positional accuracy of robot localization 
using the hybrid field of view system was in most cas-
es better than 5 cm, which is satisfactory for home or 
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office navigation.
However, an omnidirectional camera that provides 

the single effective viewpoint geometry should allow 
us to extend the applications of the hybrid system be-
yond the artificial landmarks. This is a matter of on-
going development. Another direction of further re-
search is the model of measurements uncertainty for 
the omnidirectional camera. Such a model should en-
able optimal fusion of the localization data from both 
cameras (e.g. by means of Kalman filtering), and more 
efficient planning of the positioning actions [27].
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