PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life Prediction Mechanism of Ladle Composite Structure Body Based on Simulation Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ladle plays an important role in the metallurgical industry whose maintenance directly affects the production efficiency of enterprises. In view of the problems such as low maintenance efficiency and untimely maintenance in the current ladle passive maintenance scheme, the life prediction mechanism for ladle composite structures is established which bases on the stress analysis of steel shell and ladle lining in the production process, combining conventional fatigue analysis and extended fracture theory. The mechanism is accurate and effective according to the simulation results. Through which, the useful life of steel shell can be accurately predicted by detecting the crack length of it. Due to the large number of factors affecting the life of the lining of the ladle, it is difficult to accurately predict the life of the ladle lining, so a forecasting mean based on the thermal shock method is proposed to predict the service life of the ladle lining in this paper. The life prediction mechanism can provide data support and theoretical guidance for the active maintenance of the ladle, which is the prerequisite for scientifically formulating ladle initiative maintenance program.
Twórcy
autor
  • The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Wuhan University of Science and Technology, Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan 430081, China
  • Wuhan University of Science and Technology, Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan 430081, China
autor
  • Wuhan University of Science and Technology, Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan 430081, China
  • Wuhan University of Science and Technology, Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan 430081, China
autor
  • Wuhan University of Science and Technology, Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan 430081, China
  • Wuhan University of Science and Technology, Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan 430081, China
  • Wuhan University of Science and Technology, The Research Institute of 3d Printing and Intelligent Manufacturing Engineering, Wuhan 430081, China
autor
  • Wuhan University of Science and Technology, Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan 430081, China
Bibliografia
  • [1] V. V. Slovikovskii, A. V. Gulyaeva, Refract. Ind. Ceram. 54 (1), 4-6 (2013).
  • [2] V. A. Kononov, I. I. Zemskov, Refract. Ind. Ceram. 53 (3), 151-156 (2012).
  • [3] G. F. Li, J. Liu, G. Z. Jiang, Adv. Mech. Eng. 7 (4), 1687814015575988 (2015).
  • [4] G. F. Li, J. Y. Kong, G. Z. Jiang, Int. Rev. Computers. So. 7 (1), 420-425 (2012).
  • [5] G. F. Li, J. Liu, H. H. Liu, J. Y. Kong, G. Zhen, W. T. Xiao, Y. K. Zhang, F. W. Cheng, Sensors. Transducers. 161 (12), 271-276 (2013).
  • [6] G. F. Li, Z. Liu, G. Z. Jiang, H. H. Liu, H. G, Xiong. Adv. Mech. Eng. 7 (6), 1687814015589667 (2015).
  • [7] S. G. Kahrizsangi, H. G. Dehsheikh, M. Boroujerdnia, Mater. Chem. Phys. 189, 2230-236 (2017).
  • [8] J. Yenus, G. Brooks, M. Dunn, Metall Mater Trans B. 47 (4), 2681-2689 (2016).
  • [9] G. F. Li, P. X. Qu, J. Y. Kong, G. Z. Jiang, L. X. Xie, P. Gao, Z. H. Wu, Y. He, Appl. Math. Inform. Sci. 7 (3), 1043-1050 (2013).
  • [10] G. F. Li, P. X. Qu, J. Y. Kong, G. Z. Jiang, L. X. Xie, P. Gao, Z. H. Wu, Y. He, Appl. Math. Inform. Sci. 7 (2), 439-448 (2013).
  • [11] R.A.A. Borges, G.F.B.L.E. Silva, Eng. Fail. Anal. 78, 161-168.
  • [12] X. Zhou, Z. Tang, G. Qu, Mat. Sci. Eng. A-Struct. 527 (9), 2327-2334 (2010).
  • [13] G. F. Li, W. Miao, G. Z. Jiang, Y. F. Fang, Z. J. Ju, H. H. Liu, Discrete. Cont. Dyn-S. 8 (6), 1223-1237 (2015).
  • [14] G. F. Li, J. Y. Kong, G. Z. Jiang, L. X. Xie, G. Zhao, Int. J. Inform. 12 (11), 4487-4494 (2012).
  • [15] H. G. Xiong, H. L. Fan, G. Z. Jiang, G. F. Li, Eur. J. Oper. Res. 257 (1), 13-24 (2017).
  • [16] H. G. Xiong, H. L. Fan, G. F. Li, G. Z. Jiang, Adv. Mech. Eng. 7 (9), 1687814015604546 (2015)
  • [17] D. Jiang, Z. J. Zheng, G. F. Li, Y. Sun, J. Y. Kong, G. Z. Jiang, H. G. Xiong, B. Tao, S. Xu, H. H. Liu, Z. J. Ju, Cluster. Comput. 10.1007/s10586-018-1844-5 (2018).
  • [18] F. Du, Y. Sun, G. F. Li, G. Z. Jiang, J. Y. Kong, D. Jiang, Z. Li, Int. J. Wireless. Mobil. 13 (4), 306-313 (2017).
  • [19] B. Li, Y. Sun, G. F. Li, J. Y. Kong, G. Z. Jiang, B. Tao, S. H. Xu, H. H. Liu, Cluster. Comput. 22 (Suppl. 1), 503-512 (2017).
  • [20] D. S. Chen, G. F. Li, Y. Sun, J. Y. Kong, G. Z. Jiang, H. Tang, Z. J. Ju, H. Yu, Sensors. 17 (2), 253 (2017).
  • [21] Y. J. Liao, Y. Sun, G. F. Li, J. Y. Kong, G. Z. Jiang, D. Jiang, H. B. Cai, Z. J. Ju, H. Yu, H. H. Liu, Sensors. 17 (7), 1491 (2017).
  • [22] W. Miao, G. F. Jiang, Y. F. Fang, Z. J. Ju, H. H. Liu, X. Y. Zhu, Int. J. Hum, Robot. 12 (02), 1550011 (2015).
  • [23] Y. F. Fang, H. H. Liu, G. F. Li, X. Y. Zhu, Int. J. Hum. Robot. 12 (2), 1550011 (2015).
  • [24] Y. Sun, C. Q. Li, G. Z. Jiang, D. Jiang, H. H. Liu, Z. G. Zheng, W. N. Shu, Mobile. Netw. Appl. 23 (4), 797-805 (2018).
  • [25] W. Dong, D. Yang, B. S. Zhang, Z. M. Wu, J. Eng. Mech. 144 (6), 04018039 (2018).
  • [26] Z. Li, G. F. Li, Y. Sun, G. Z. Jiang, J. Y. Kong, H. H. Liu, Int. J. Comput. Sci. Mat. 8 (1), 52-60 (2017).
  • [27] T. Stein, M. Wicke, A. Brueckner-Foit, T. Kirsten, M. Zimmermann, F. Buelbuel, H.-J. Christ, J. Mater. Res. 32 (23), 4354-4361 (2017).
  • [28] W. Miao, G. F. Li, Y. Sun, G. Z. Jiang, J. Y. Kong, H. H. Liu, Int. J. Wireless. Mobil. 11 (4), 348-356 (2016).
  • [29] D. Chen, G. F. Li, G. Z Jiang, Y. F. Fang, Z. J Ju, H. H. Liu, J. Comput. Theor. Nanos. 12 (12), 6126-6132 (2015).
  • [30] W. Li, Z. Luo, Z. Sun, Y. Hu, W. H. Duan, Mag. Concrete. Res. 70 (9), 459-472 (2018).
  • [31] T. L. Zhao, Z. Y. Liu, C. W. Du, C. D. Dai, X. G. Li, Mat. Sci. Eng. A-Struct. 708, 181-192 (2017).
  • [32] D. S. Rabelo, J. D. Hobeck, D. J. Inman, R. M. Finzi Neto, V. Stef-fen, J. Intel. Mat. Syst. Str. 28 (20), 3152-3162 (2017).
  • [33] B. Richard, E. Kishta, C. Giry, F. Ragueneau, Mech. Res. Commun. 86, 32-36 (2017).
  • [34] W. L. Ding, G. F. Li, Y. Sun, G. Z. Jiang, J. Y. Kong, H. H. Liu, Int. J. Comput. Sci. Mat. 8 (2), 138-145 (2017).
  • [35] D. S. Chen, G. F. Li, Y. Sun, G. Z. Jiang, J. Y. Kong, J. H. Li, H. H. Liu, Int. J. Wireless. Mobil. 12 (3), 305-312 (2017).
  • [36] R. J. Nims, K. M. Durney, A. D. Cigan, A. Dusseaux, C. T. Hung, G. A. Ateshian, Interface. Focus. 6 (1), 20150063 (2016).
  • [37] G. F. Li, Z. Liu, J. Y. Kong, G. Z. Jiang, W. J. Chang, B. Li, J. H. Li, J. Wuhan. U. Sci. Techno. 39 (1), 401-407 (2016).
  • [38] W. J. Chang, G. F. Li, J. Y. Kong, Y. Sun, G. Z. Jiang, H. H. Liu, Arch. Metall. Mater. 63 (2), 659-666 (2018).
  • [39] Y. H. Lu, P. L. Xiang, P. Dong, X. Zhang, J. Zeng, Eng Fail Anal. 89, 222-241 (2018).
  • [40] A. Mantawy, J. C. Anderson, Soil. Dyn. Earthq. Eng. 109, 46-57 (2018).
Uwagi
EN
This work was supported by the Grants of The State Key Laboratory of Refractories and Metallurgy of China (Grant Nos. 2018QN16), grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51575338, 51575412, 61733011) and the Grants of National Defense Pre-Research Foundation of Wuhan University of Science and Technology (GF 201705).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58662877-731a-41a1-8466-384895d18ccc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.