PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena konstrukcji skraplacza na podstawie minimum strumienia generacji entropii

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The condenser design assessment on the basis of the minimum entropy generation
Języki publikacji
PL
Abstrakty
PL
W skraplaczach energetycznych generowane są jedne z największych strat strumienia entropii w instalacji energetycznej. Celowe jest obniżanie tej straty, aby uzyskać poprawę całkowitej sprawności instalacji. W artykule podano warunek dla minimum generacji strumienia entropii, z którego wynika, że minimum to jest osiągnięte, gdy podgrzew wody w rurkach skraplacza ma równomierny rozkład (przyjmuje taką samą wartość dla wszystkich rurek). Poprawność tego warunku sprawdzono na podstawie danych uzyskanych z symulatora 2D skraplacza dla jednego z krajowych bloków o mocy 50 MW. Na podstawie otrzymanych z symulatora przyrostów temperatur oraz odpowiadających im ciśnień pary dla 30 rurek dokonano oceny poprawności konstrukcji skraplacza.
EN
The losses in power plants condensers are some of the biggest losses in the entropy generation in whole power plant system. It is advisable to decrease the loss for improving the overall efficiency of the system. The article presents the condition for the minimum entropy generation, which states that the minimum is achieved when the heating of the water in the tubes of the condenser has a uniform distribution (takes the same value for all tubes). The correctness of this condition was verified on the basis of data obtained from the 2D condenser simulator for one of the national units with a 50 MW electric capacity. On the basis of the simulator increases temperatures and steam pressures corresponding to 30 tubes assesses the correctness of the construction of the condenser.
Twórcy
autor
  • Instytut Techniki Cieplnej, Politechnika Warszawska, Warszawa, Polska
autor
  • Instytut Techniki Cieplnej, Politechnika Warszawska, Warszawa, Polska
  • Centralny Ośrodek Badawczo Rozwojowy Aparatury Badawczej i Dydaktycznej Cobrabid Sp. z o. o. w Warszawie, Warszawa, Polska
  • Instytut Techniki Cieplnej, Politechnika Warszawska, Warszawa, Polska
autor
  • Instytut Techniki Cieplnej, Politechnika Warszawska, Warszawa, Polska
Bibliografia
  • [1] El-Wakil M. M., Power plant technology, McGraw-Hill, New York, 1984.
  • [2] Kolenda Z., Analysis of the possibility to reduce the imperfections of the thermodynamic processes of the supply of electricity, heat and cooling in the context of sustainable development of the country. Exergy analysis and entropy generation minimization method (in Polish), Publisher PAN (Ed. by Ziębik A., Szargut J., Stanek W.), 2006.
  • [3] Kostowski E., Heat Transfer (in Polish), WPŚ Gliwice, 2000.
  • [4] Cengel Y. A., Heat and mass transfer, McGraw-Hill, 2007.
  • [5] Grzebielec A., Rusowicz A., Thermal Resistance of Steam Condensation in Horizontal Tube Bundles, Journal of Power Technologies 91 (1), 41-48, 2011.
  • [6] Laskowski R., Smyk A., Analysis of the working conditions of a steam condenser using measurements and an approximation model (in Polish), Rynek Energii 1 (110), 2014. [32].
  • [7] Rusowicz A., Grzebielec A., The numerical modelling of a church window power plant condenser, Rynek Energii 6 (109), 137-141, 2011.
  • [8] Rusowicz A., Issues concerning mathematical modelling of power condensers (in Polish), Politechnika Warszawska, 2013.
  • [9] Smyk A., Influence of the parameters in nuclear CHP for fuel savings in fuel – energy system (in Polish), Ph. D. thesis, Politechnika Warszawska, 1999.
  • [10] Butrymowicz D., Trela M., Effects of fouling and inert gases on performance of recuperative feed-water heaters, Archives of Thermodynamics No. 1-2, Vol. 23, 2001.
  • [11] Drozynski Z., Phenomenological model of steam condensation containing noncondensable gases on a single non-inundated tube, Arch. Thermodyn. 27(2006), 4, 67-78.
  • [12] Szkłowier G. G., Milman O. O., Issledowanije i rasczot kondensacionnych ustrojstw parowych turbin. Energoatomizdat. Moskwa 1985.
  • [13] Fujii T., Research Problems for Improving the Performance of Power Plant Condensers, Condensation and Condenser Design, ASME 1993, pp. 487-498.
  • [14] Fujii T., Uehara H., Hirata K., Oda K., Heat transfer and flow resistance in condensation of low pressure steam flowing through tube banks, Int. Journal Heat Mass Transfer 15, 1972, pp. 247-259.
  • [15] Malin M. R., Modelling flow in an experimental marine condenser. Int. Comm. Heat Transfer, vol. 24, No. 5, 1997, pp. 597-608.
  • [16] Prieto M. M., Suarez I. M., Montanes E., Analysis of the thermal performance of a church window steam condenser for different operational conditions using three models, Applied Thermal Engineering No. 23, 2003, pp. 163-178.
  • [17] Ravigururajan T. S., Bergles A. E., Optimization of in-tube enhancement for large evaporators and condensers, Energy vol. 21, 1996, pp. 421-432.
  • [18] Ramón I. S., González M. P., Numerical study of the performance of a church window tube bundle condenser, Int. J. Therm. Sci. 2001, 40, pp. 195-204.
  • [19] Zhang C., Sousa A. C. M., Venart J. E. S., The Numerical and Experimental Study of a Power Plant Condenser, Journal of Heat Transfer, Vol. 115, 1993, pp. 435-445.
  • [20] Zhang C., Sousa A. C. M., Venart J. E. S., Numerical Simulation of Different Types of Steam Surface Condensers, Journal of Energy Resources Technology, Transactions of the ASME, vol. 113, no. 2, 1991, pp. 63-70.
  • [21] Sato K., Taniguchi A., Kamada T., Yoshimura R., Mochida Y., New tube arrangement of condenser for power stations, JSME Int. J. Ser. B: Fluids Thermal Eng. 41 (1998) 752-758.
  • [22] Gong A. C., Zhang X. N., Qin G. Y., Xu Y., Two-dimension numerical analysis and improvement of the fluid flow and heat transfer performance in Daya bay nuclear power station condenser, Power Eng. 24 (2004) 576-579.
  • [23] Hui Zeng, Ji’an Meng, Zhixin Li, Numerical study of a power plant condenser tube arrangement, Applied Thermal Engineering 40 (2012) 294-303.
  • [24] Bejan A., The concept of irreversibility in heat exchanger design: counterflow heat exchangers for gas-to-gas applications, J. Heat Transfer Trans. ASME 99 (3) (1977) 374-380.
  • [25] Bejan A., Second-law analysis in heat transfer and thermal design, Adv. Heat Transfer 1982, 15, 1-58.
  • [26] Szargut J., Problems of thermodynamics optimization, Archives of Thermodynamics 19, 3/4 (1998), 85-94.
  • [26] Mishra M., Das P. K., Sarangi S., Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm, Applied Thermal Engineering 29 (2009) 2983-2989.
  • [27] Ogulata R. T., Doba F., Yilmaz T., Irreversibility analysis of cross flow heat exchangers, Energy Conversion & Management 41 (2000) 1585-1599.
  • [28] Ogulata R. T., Doba F., Yilmaz T., Second-law and experimental analysis of a cross-flow heat exchanger, Journal of Heat Transfer Engineering 20 (1999) 20-27.
  • [29] Rao R. V., Patel V. K., Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, International Journal of Thermal Sciences 49 (2010) 1712-1721.
  • [30] Lerou P. P. P. M., Veenstra T. T., Burger J. F., Brake H. J. M., Rogalla H., Optimization of counterflow heat exchanger geometry through minimization of entropy generation, Cryogenics 45 (2005) 659-669.
  • [31] Ordonez J. C., Bejan A., Entropy generation minimization in parallel-plates counterflow heat exchangers, Int. J. Energy Res. 2000; 24: 843-864.
  • [32] Guo J., Cheng L., Xu M., Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm, Applied Thermal Engineering 29 (2009) 2954-2960.
  • [33] Min Li, Alvin C. K. Lai, Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method, Energy Conversion and Management 65 (2013) 133-139.
  • [34] Zhou Y. , Zhu L., Yu J., Li Y., Optimization of plate-fin heat exchangers by minimizing specific entropy generation rate, International Journal of Heat and Mass Transfer 78 (2014) 942-946.
  • [35] Sahiti N., Krasniqi F., Fejzullahu Xh., Bunjaku J., Muriqi A., Entropy generation minimization of a double-pipe pin fin heat exchange, Applied Thermal Engineering 28 (2008) 2337-2344.
  • [36] Laskowski R., Rusowicz A., Smyk A., Verification of the condenser tubes diameter based on the minimization of entropy generation (in Polish), Rynek Energii 1/2015, 71-75.
Uwagi
PL
Będna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5865635d-0595-4799-b45c-8a809b42a250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.