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Abstrat. The problem of alulating routing probabilities in paket synhronous

networks, suh as optially-swithed paket networks, involves enumerating paket

arrangements. Previously we published a method for enumerating the most probable

paket arrangements, and in this artile we present its novel graph interpretation and

evaluate the method for several stop onditions and for the Poisson and geometri

probability distributions of arriving pakets.

1. Introdution

Optial paket swithing (OPS) is a tehnology that ould be deployed in

future optial networks with paket swithing [1℄. In synhronous OPS pakets

are sent out a node at the beginning of a time slot, and pakets last one time

slot. Performane evaluation of OPS networks an be used for o�-line network

planning and on-line evaluation to proatively provision optial resoures with

OpenFlow [2℄.

One of the problems in the performane evaluation of synhronous OPS

is the enumeration of the possibilities of paket arrivals at a node, whih we

all paket arrangements or just arrangements. Enumerating all arrangements

may be impratial and unneessary, and so in [3℄ we published an algorithm

whih e�iently �nds any number of the most probable arrangements.
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2. Problem statement

A �ow is a sequene of pakets grouped together aording to a given rite-

rion, suh as the same soure and destination nodes. A �ow is desribed by

a probability distribution of the number of pakets that arrive at a node in

a time slot. There are R �ows for whih the probability distribution funtions

are given by vetor F = (f1, . . . , fr, . . . , fR). We assume that the distribution

funtions fr are independent.

An arrangement takes plae at a node in every time slot, and it is de-

sribed by a disrete random variable X = (x1, . . . , xr, . . . , xR), where xr is

a disrete random variable of the number of pakets that belong to �ow r.

The probability of arrangement X an be alulated as given by Eq. (1):

P (X,F ) =

R∏

r=1

fr(xr). (1)

Arrangement X an be alternatively desribed by a random variable

Y = (y1, . . . , yr, . . . , yR), where the number of pakets xr is the yrth most

probable for �ow r. For distribution fr(xr), we an �nd the value of xr that

yields the highest value of fr(xr), i.e. the mode, and denote it Γr(1). The

next most probable number is Γr(2), and Γr(yr) for the further yr-th most

probable number of pakets.

The number of possible arrangements is the produt of the domain sizes

of �ow distributions. If a distribution for a �ow is in�nite, the number of

arrangements is in�nite too. Even if the number of arrangements if �nite,

enumerating all of them may be unneessary.

Instead of enumerating arrangements in an arbitrary order, we �nd a se-

quene Xe = (x1,e, . . . , xr,e, . . . , xR,e) of the most probable arrangements,

where X1 is the most probable one, while the next arrangements Xe have

noninreasing probabilities, i.e. P (Xe, F ) ≥ P (Xe+1, F ).

3. Algorithm

The algorithm �nds e�iently any number of the most probable arrangements,

and stops aording to the stop ondition provided by the user. In this setion

we present a novel graph interpretation of the algorithm.

There is given a weighted direted graph. A vertex represents an arrange-

ment, and the label of the vertex represents the probability of the arrange-

ment. The soure vertex represents arrangement Y1. An edge leaving vertex

Ye represents a possible way of obtaining a di�erent arrangement by hanging

in arrangement Ye the number of pakets of a single �ow to the next most
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Figure 1: A graph of the possible arrangements for two �ows.

probable value. The weight of an edge is negative and represents the derease

in probability of arrangement Ye aused by the hange.

Figure 1 depits a graph for two �ows, but the vertex labels and edge

weights are omitted. The soure vertex Y1 = (1, 1) is the most probable, and

from it two new arrangements an be obtained: (1, 2) and (2, 1), but whih of

them is Y2 depends on their probabilities.

In suh a graph, the algorithm �nds the longest paths from the soure

vertex to other vertexes. For this purpose we adapted the Dijkstra algorithm,

even though the input data violates the onditions of the Dijkstra algorithm,

that the edges are nonnegative and that vertex labels are nondereasing.

The adaptation involved a number of hanges. First, the vertexes in the

priority queue are sorted not with inreasing labels, but with dereasing labels,

as we searh for vertexes with dereasing probabilities. Seond, the relaxation

of an edge is performed not when there is an edge that yields a lower label

of a vertex, but when an edge yields a higher label of a vertex. Finally, the

soure vertex is labeled not with zero, but with the probability of the most

probable arrangement.

4. Evaluation

The evaluation disussed in this setion was implemented as part of the test

suite of the OPUS software. The program �le is test/test_arr_queue., and

is available for download at [4℄.

Figures 2, 3, 4 and 5 show results of �nding arrangements for �ve stop

onditions. In eah of the �gures there are two sub�gures, one for the �ows of

the Poisson distribution, the other for the �ows of the geometri distribution.

The reported values are a funtion of the number of �ows R.

A stop ondition, when met, auses the algorithm to stop �nding further

arrangements. A number of stop onditions an be devised, but we de�ne

�ve stop onditions. They an be used separately or in a ompound state-

ment. The algorithm stops when: 1) a number of found arrangements reahes

a given value, 2) the aggregate probability of found arrangements exeeds

a given value, 3) the ratio of the probability of the found arrangement to
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(a) The Poisson ase (b) The geometri ase

Figure 2: Aggregate probability of onsidered arrangements.
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(a) The Poisson ase (b) The geometri ase

Figure 3: The number of onsidered arrangements.

the probability of the most probable arrangement drops below a given value,

4) the size of the priority queue of arrangements exeeds the given value, 5) the

exeution time exeeds the given value.

Eah bar in the �gures reports a mean value of a sample of 100 test ases.

A test ase has the parameters of its �ows hosen at random: for the Poisson

�ows the intensities λ ∈ (0, 1), for the geometri �ows the probabilities of

suess p ∈ (0.5, 1). The standard errors of the means are small, and they are

not reported in the �gures. Results for eah of the �ve onditions are shown

in eah �gure with the same bars: the blak bars ( ) are for the limit of

1000 on the number of arrangements, the gray bars ( ) are for the limit

of 0.5 on the aggregate probability, the white bars ( ) are for the limit of

10−2 on the probability ratio, the heked bars ( ) are for the limit of 1000

on the arrangement queue size, and the slashed bars ( ) are for the limit

of 10 ms on the exeution time.
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(a) The Poisson ase (b) The geometri ase

Figure 4: The time needed to �nd the arrangements.
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(a) The Poisson ase (b) The geometri ase

Figure 5: The size of the queue.

Figure 2a shows the aggregate probability of the onsidered arrangements.

For up to 6 �ows, the number of onsidered arrangements were enough to re-

sult in the aggregate probabilities above 0.9. For 10 �ows the probability was

slightly above 0.7. Clearly, the stop ondition for the number of onsidered

arrangements yields aggregate probability that dereases faster than a linear

funtion as the number of �ows dereases. The other onditions gave results of

similar harateristi, but the time ondition gave the least dereasing aggre-

gate probabilities as the number of �ows inreased. Figure 2b shows similar

results for the geometri �ows. Figures 3, 4, 5 show the results on a logarith-

mi sale. Most of the results are an exponential funtion of the number of

�ows, as the bars in the plots raise and fall like a linear funtion. However,

there is one exeption: the exeution time with the limit on the queue length

(Fig. 5, slashed bars) depends slightly on the number of �ows, whih suggests

that the operation of inserting of an element into the queue dominates.
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5. Conlusion

The evaluation showed that the proposed algorithm �nds e�iently the most

probable arrangements, beause we adopted the e�ient Dijkstra algorithm.

However, as the number of �ows inreases, the number of arrangements re-

quired to obtain a given aggregate probability inreases exponentially. For

a small number of �ows the algorithm performs satisfatorily, but for larger

number of �ows the algorithm is rendered unusable, beause the number of

arrangements to onsider (i.e. the size of the problem) grows exponentially.

In the future work, one ould researh how the algorithm performed had

the distributions been orrelated.
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