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Abstra
t. The problem of 
al
ulating routing probabilities in pa
ket syn
hronous

networks, su
h as opti
ally-swit
hed pa
ket networks, involves enumerating pa
ket

arrangements. Previously we published a method for enumerating the most probable

pa
ket arrangements, and in this arti
le we present its novel graph interpretation and

evaluate the method for several stop 
onditions and for the Poisson and geometri


probability distributions of arriving pa
kets.

1. Introdu
tion

Opti
al pa
ket swit
hing (OPS) is a te
hnology that 
ould be deployed in

future opti
al networks with pa
ket swit
hing [1℄. In syn
hronous OPS pa
kets

are sent out a node at the beginning of a time slot, and pa
kets last one time

slot. Performan
e evaluation of OPS networks 
an be used for o�-line network

planning and on-line evaluation to proa
tively provision opti
al resour
es with

OpenFlow [2℄.

One of the problems in the performan
e evaluation of syn
hronous OPS

is the enumeration of the possibilities of pa
ket arrivals at a node, whi
h we


all pa
ket arrangements or just arrangements. Enumerating all arrangements

may be impra
ti
al and unne
essary, and so in [3℄ we published an algorithm

whi
h e�
iently �nds any number of the most probable arrangements.
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2. Problem statement

A �ow is a sequen
e of pa
kets grouped together a

ording to a given 
rite-

rion, su
h as the same sour
e and destination nodes. A �ow is des
ribed by

a probability distribution of the number of pa
kets that arrive at a node in

a time slot. There are R �ows for whi
h the probability distribution fun
tions

are given by ve
tor F = (f1, . . . , fr, . . . , fR). We assume that the distribution

fun
tions fr are independent.

An arrangement takes pla
e at a node in every time slot, and it is de-

s
ribed by a dis
rete random variable X = (x1, . . . , xr, . . . , xR), where xr is

a dis
rete random variable of the number of pa
kets that belong to �ow r.

The probability of arrangement X 
an be 
al
ulated as given by Eq. (1):

P (X,F ) =

R∏

r=1

fr(xr). (1)

Arrangement X 
an be alternatively des
ribed by a random variable

Y = (y1, . . . , yr, . . . , yR), where the number of pa
kets xr is the yrth most

probable for �ow r. For distribution fr(xr), we 
an �nd the value of xr that

yields the highest value of fr(xr), i.e. the mode, and denote it Γr(1). The

next most probable number is Γr(2), and Γr(yr) for the further yr-th most

probable number of pa
kets.

The number of possible arrangements is the produ
t of the domain sizes

of �ow distributions. If a distribution for a �ow is in�nite, the number of

arrangements is in�nite too. Even if the number of arrangements if �nite,

enumerating all of them may be unne
essary.

Instead of enumerating arrangements in an arbitrary order, we �nd a se-

quen
e Xe = (x1,e, . . . , xr,e, . . . , xR,e) of the most probable arrangements,

where X1 is the most probable one, while the next arrangements Xe have

nonin
reasing probabilities, i.e. P (Xe, F ) ≥ P (Xe+1, F ).

3. Algorithm

The algorithm �nds e�
iently any number of the most probable arrangements,

and stops a

ording to the stop 
ondition provided by the user. In this se
tion

we present a novel graph interpretation of the algorithm.

There is given a weighted dire
ted graph. A vertex represents an arrange-

ment, and the label of the vertex represents the probability of the arrange-

ment. The sour
e vertex represents arrangement Y1. An edge leaving vertex

Ye represents a possible way of obtaining a di�erent arrangement by 
hanging

in arrangement Ye the number of pa
kets of a single �ow to the next most



Evaluation of a method for enumerating the most probable pa
ket 149

(1, 1)

(1, 2)

(2, 1)

(1, 3)

(2, 2)

(3, 1)

· · ·

· · ·

· · ·

Figure 1: A graph of the possible arrangements for two �ows.

probable value. The weight of an edge is negative and represents the de
rease

in probability of arrangement Ye 
aused by the 
hange.

Figure 1 depi
ts a graph for two �ows, but the vertex labels and edge

weights are omitted. The sour
e vertex Y1 = (1, 1) is the most probable, and

from it two new arrangements 
an be obtained: (1, 2) and (2, 1), but whi
h of

them is Y2 depends on their probabilities.

In su
h a graph, the algorithm �nds the longest paths from the sour
e

vertex to other vertexes. For this purpose we adapted the Dijkstra algorithm,

even though the input data violates the 
onditions of the Dijkstra algorithm,

that the edges are nonnegative and that vertex labels are nonde
reasing.

The adaptation involved a number of 
hanges. First, the vertexes in the

priority queue are sorted not with in
reasing labels, but with de
reasing labels,

as we sear
h for vertexes with de
reasing probabilities. Se
ond, the relaxation

of an edge is performed not when there is an edge that yields a lower label

of a vertex, but when an edge yields a higher label of a vertex. Finally, the

sour
e vertex is labeled not with zero, but with the probability of the most

probable arrangement.

4. Evaluation

The evaluation dis
ussed in this se
tion was implemented as part of the test

suite of the OPUS software. The program �le is test/test_arr_queue.

, and

is available for download at [4℄.

Figures 2, 3, 4 and 5 show results of �nding arrangements for �ve stop


onditions. In ea
h of the �gures there are two sub�gures, one for the �ows of

the Poisson distribution, the other for the �ows of the geometri
 distribution.

The reported values are a fun
tion of the number of �ows R.

A stop 
ondition, when met, 
auses the algorithm to stop �nding further

arrangements. A number of stop 
onditions 
an be devised, but we de�ne

�ve stop 
onditions. They 
an be used separately or in a 
ompound state-

ment. The algorithm stops when: 1) a number of found arrangements rea
hes

a given value, 2) the aggregate probability of found arrangements ex
eeds

a given value, 3) the ratio of the probability of the found arrangement to
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Figure 2: Aggregate probability of 
onsidered arrangements.
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Figure 3: The number of 
onsidered arrangements.

the probability of the most probable arrangement drops below a given value,

4) the size of the priority queue of arrangements ex
eeds the given value, 5) the

exe
ution time ex
eeds the given value.

Ea
h bar in the �gures reports a mean value of a sample of 100 test 
ases.

A test 
ase has the parameters of its �ows 
hosen at random: for the Poisson

�ows the intensities λ ∈ (0, 1), for the geometri
 �ows the probabilities of

su

ess p ∈ (0.5, 1). The standard errors of the means are small, and they are

not reported in the �gures. Results for ea
h of the �ve 
onditions are shown

in ea
h �gure with the same bars: the bla
k bars ( ) are for the limit of

1000 on the number of arrangements, the gray bars ( ) are for the limit

of 0.5 on the aggregate probability, the white bars ( ) are for the limit of

10−2 on the probability ratio, the 
he
ked bars ( ) are for the limit of 1000

on the arrangement queue size, and the slashed bars ( ) are for the limit

of 10 ms on the exe
ution time.
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Figure 4: The time needed to �nd the arrangements.
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Figure 5: The size of the queue.

Figure 2a shows the aggregate probability of the 
onsidered arrangements.

For up to 6 �ows, the number of 
onsidered arrangements were enough to re-

sult in the aggregate probabilities above 0.9. For 10 �ows the probability was

slightly above 0.7. Clearly, the stop 
ondition for the number of 
onsidered

arrangements yields aggregate probability that de
reases faster than a linear

fun
tion as the number of �ows de
reases. The other 
onditions gave results of

similar 
hara
teristi
, but the time 
ondition gave the least de
reasing aggre-

gate probabilities as the number of �ows in
reased. Figure 2b shows similar

results for the geometri
 �ows. Figures 3, 4, 5 show the results on a logarith-

mi
 s
ale. Most of the results are an exponential fun
tion of the number of

�ows, as the bars in the plots raise and fall like a linear fun
tion. However,

there is one ex
eption: the exe
ution time with the limit on the queue length

(Fig. 5, slashed bars) depends slightly on the number of �ows, whi
h suggests

that the operation of inserting of an element into the queue dominates.
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5. Con
lusion

The evaluation showed that the proposed algorithm �nds e�
iently the most

probable arrangements, be
ause we adopted the e�
ient Dijkstra algorithm.

However, as the number of �ows in
reases, the number of arrangements re-

quired to obtain a given aggregate probability in
reases exponentially. For

a small number of �ows the algorithm performs satisfa
torily, but for larger

number of �ows the algorithm is rendered unusable, be
ause the number of

arrangements to 
onsider (i.e. the size of the problem) grows exponentially.

In the future work, one 
ould resear
h how the algorithm performed had

the distributions been 
orrelated.
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