PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The variation of free gas distribution within the seeping seafloor hydrate stability zone and its link to hydrate formations in the Qiongdongnan Basin

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
China geological survey has conducted two hydrate expeditions for two gas chimney structures (GC1, GC2) in the Qiongdongnan Basin, South China Sea, where the fluid migrations vary significantly. Although massive hydrates were recovered both in the seepage pathways above GC1 and GC2, the free gas distributions in seeping seafloor hydrate stability zone (HSZ) remain controversial. Previous studies confirm that structure I (sI) and structure II (sII) hydrates occur through the whole seepage pathways, and free gas accumulates below the base of methane hydrate stability zone (BHSZ). In fact, free gas and gas hydrates coexist in the whole seepage-gas chimney system. The quantitative estimation of the fluid distribution is significant for studying the heterogeneous fluid migration in the seepages. In this study, Archie formula and three-phase Biot-type equation are modified to invert fluid concentrations for the whole well sections, in which brine, free gas, gas hydrate and matrix are considered as separate phases. The results indicate that the bottom simulating reflector is the boundary of an increasing gas concentration and a decrease hydrate concentration, instead of the interfaces of the hydrate and free gas in most areas. And hydrate occurrence is closely related to the micro-fault in the gas chimney. By comparing the fluid distribution between GC1 and GC2, more free gas associated with gas hydrates is accumulated in the seepage pathways in HSZ in GC1 where less free gas occurred below the BHSZ. Gas-bearing fluids in GC1 are considered to be very active in historic time, but they nearly stop flowing now, and the remaining gas cannot form hydrates in the hydrate-saturated pores, while the fluids in GC2 tend to convert to hydrates till now, and it is an active or younger fluid system. Free gas is the important intermediate medium for revealing this phase transition and exerts a significant control on the timescales associated with phase equilibrium variation processes. It is the first study revealing the relationship between the fluid distribution and the mobility of the seepage-gas chimney system in the study area, which also provide a new insight for estimating hydrate resource.
Czasopismo
Rocznik
Strony
1115--1136
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
  • Guangzhou Marine Geological Survey, Guangzhou, China
  • Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
  • Natural Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
  • Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
  • Natural Gas Hydrate Engineering Technology Center, China Geological Survey, Guangzhou, China
autor
  • Guangzhou Marine Geological Survey, Guangzhou, China
autor
autor
  • Guangzhou Marine Geological Survey, Guangzhou, China
Bibliografia
  • 1. Aki K, Richards PG (2002) Quantitative seismology.
  • 2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transact AIME 146(01):54–62
  • 3. Arps JJ (1953) The effect of temperature on the density and electrical resistivity of sodium chloride solutions. Pet Transact AIME 5(10):17–20
  • 4. Boswell R (2009) Is gas hydrate energy within reach? Science 325:957–958
  • 5. Boswell R, Collett T, Frye M, Shedd W, McConnell D, Shelander D (2012) Subsurface gas hydrates in the northern Gulf of Mexico. J Mar Pet Geol 34(1):4–30
  • 6. Boswell R, Schoderbek D, Collett TS et al (2017) The iġnik sikumi field experiment, alaska north slope: design, operations, and implications for CO2–CH4 exchange in gas hydrate reservoirs. Energy Fuel 31(1):140–153
  • 7. Boswell R, Collett TS, Cook AE et al (2020) Introduction to special issue: gas hydrates in green canyon block 955, deep-water Gulf of Mexico: part I. AAPG Bull 104:1843–1846
  • 8. Carcione JM, Tinivella U (2000) Bottom-simulating reflectors: seismic velocities and AVO effects. Geophys 65:54–67
  • 9. Cathles L, Chen D (2004) A compositional kinetic model of hydrate crystallization and dissolution. J Geophys Res Solid Earth 109:B08102
  • 10. Chen F, Zhou Y, Su X et al (2011) Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of northern South China Sea. Mar Geol Quat Geol 31(5):95–100
  • 11. Chen D et al (2003) A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: application to the bush hill vent site, green canyon block 185, Gulf of Mexico. J Geophys Res Solid Earth 108(B1):2058
  • 12. Dai S, Seol Y (2014) Water permeability in hydrate-bearing sediments: a porescale study. Geophys Res Lett 41(12):4176–4184
  • 13. Daigle H (2016) Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis. J Pet Sci Eng 146(2016):526–535
  • 14. Daigle H, Bangs NL, Dugan B (2011) Transient hydraulic fracturing and gas release in methane hydrate settings: a case study from southern hydrate ridge. Geochem Geophys Geosyst 12:Q12022
  • 15. Deng W, Liang J, He YL et al (2020) Rock-physics-based estimation of quartz content in the Shenhu area South China Sea. Acta Geophys 68:1619–1641
  • 16. Deng W, Liang J, Zhang W et al (2021) Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern South China Sea. Mar Pet Geol 124:104810
  • 17. Dickens GR, Quinby HMS (1994) Methane hydrate stability in seawater. Geophys Res Lett 21(19):2115–2118
  • 18. Dvorkin J, Nur A (1993) Rock physics for characterization of gas hydrates. US Geol Surv Prof Pap 1570:293–298
  • 19. Ecker C, Dvorkin J, Nur AM (2000) Estimating the amount of gas hydrate and free gas from marine seismic data. Geophys 65:565–573
  • 20. Gong ZS, Li ST (1997) Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea. Science Press, Beijing, pp 193–256
  • 21. Guan JA, Liang DQ, Wu NY, Fan SS (2009) The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone. J Asian Earth Sci 36(2009):277–288
  • 22. Hamilton EL (1980) Geoacoustic modeling of the sea floor. J Acoust Soc Am 68:1313–1340
  • 23. Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26:2021–2024
  • 24. Helgerud MB, Waite WF, Kirby SH, Nur A (2009) Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. J Geophys Res 114:B02212
  • 25. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface-what have we learned in the past decade. Earth Sci Rev 61:149–179
  • 26. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc 65(5):349
  • 27. Huang B, Xiao X, Li X (2003) Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan Basins, offshore South China Sea. Org Geochem 34:1009–1025
  • 28. Jakobsen M, Hudson JA, Minshull TA, Singh SC (2000) Elastic properties of hydrate-bearing sediments using effective medium theory. J Geophys Res 105:561–577
  • 29. Kida M, Khlystov O, Zemskaya T et al (2006) Coexistence of sI and II gas hydrates in lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33(24):L24603
  • 30. Klapp SA, Bohrmann G, Kuhs WF et al (2010) Microstructures of sI and II gas hydrates from the Gulf of Mexico. Mar Pet Geol 27(1):116–125
  • 31. Kleinberg RL, Flaum C, Griffin DD et al (2003) Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J Geophys Res 108(B10):2508
  • 32. Kondo W, Ohtsuka K, Ohmura R et al (2014) Clathrate-hydrate formation from a hydrocarbon gas mixture. Appl Energy 113(1):864–871
  • 33. Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51
  • 34. Kvenvolden KA (1993) Gas hydrates: geological perspective and global change. Rev Geophys 31:173–187
  • 35. Lai H, Fang Y, Kuang Z, Ren J, Xing C (2021) Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08. Mar Pet Geol 123:104774
  • 36. Lee MW, Collett TS (2001) Elastic properties of gas hydrate-bearing sediments. Geophys 66:763–771
  • 37. Lee MW, Collett TS (2009) Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J Geophys Res Solid Earth 114(B07102)
  • 38. Lee MW, William FW (2008) Estimating pore-space gas hydrate saturations from well log acoustic data. Geochem Geophy Geosyst 9(7):Q07008
  • 39. Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res 101:20347–20358
  • 40. Lee MW (2005) Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones. US Geological Survey, Reston, pp 1–14
  • 41. Lee MW (2007) Velocities and attenuations of gas hydrate-bearing sediments. US Department of the Interior US Geological Survey
  • 42. Li JF, Ye JL, Qin XW et al (2018) The first offshore natural gas hydrate production test in South China Sea. China Geol 1(1):5–16
  • 43. Liang JQ, Fu SY, Chen F (2017) Submarine methane leakage and hydrate accumulation in the northeastern South China Sea. Nat Gas Geos 28(5):761–770
  • 44. Liang J, Zhang W, Lu JA, Wei J, Kuang Z, He Y (2019) Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5-W9-2018. Mar Geol 418:106042
  • 45. Liu X, Flemings PB (2006) Passing gas through the hydrate stability zone at southern hydrate ridge, offshore oregon. Earth Planet Sci Lett 241(1–2):211–226
  • 46. Liu X, Flemings PB (2007) Dynamic multiphase flow model of hydrate formation in marine sediments. J Geophys Res 112:B03101
  • 47. Liu X, Flemings PB (2011) Capillary effects on hydrate stability in marine sediments. J Geophys Res 116:B07102
  • 48. Lu H, Seo YT, Lee JW et al (2007) Complex gas hydrate from the Cascadia margin. Nature 445(7125):303–306
  • 49. Macdonald SIR (1994) Evidence of structure H hydrate, Gulf of Mexico continental slope. Org Geochem 22:1029–1032
  • 50. Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36(5):681–702
  • 51. Milkov AV, Dickens GR, Claypool GE (2004) Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at hydrate ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth Planet Sci Lett 222:829–843
  • 52. Miller JJ, Lee MW, von Huene R (1991) An analysis of a seismic reflection from the base of a gas hydrate zone, offshore peru. AAPG Bull 75:910–924
  • 53. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech ASME 16:259–268
  • 54. Paganoni M, Cartwright JA, Fosch IM et al (2016) sII gas hydrates found below the bottom-simulating reflector. Geophys Res Lett 43(11):5696–5706
  • 55. Pandey L, Sain K, Joshi AK (2019) Estimate of gas hydrate saturations in the Krishna-Godavari Basin, eastern continental margin of India, results of expedition NGHP-02. Mar Pet Geol 108:581–594
  • 56. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res Solid Earth 109(B1):B01201
  • 57. Qian J, Wang X, Collett TS et al (2018) Downhole log evidence for the coexistence of sII gas hydrate and free gas below the bottom simulating reflector in the South China Sea. Mar Pet Geol 98:662–674
  • 58. Riedel M, Collett TS, Kumar P, Sathe AV, Cook A (2010) Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India. J Mar Pet Geol 27:1476–1493
  • 59. Ryu B, Collett TS, Riedel M et al (2013) Scientific results of the second gas hydrate drilling expedition in the Ulleung basin (UBGH2). Mar Pet Geol 47:21–29
  • 60. Sava D, Hardage B, Murray P et al (2008) Rock-physics joint inversion of resistivity-log and seismic velocity for hydrate characterizationC/SEG technical program expanded abstracts 15 Dec 2008, Houston
  • 61. Sen MK (2006) Seismic inversion. Society of Petroleum Engineers publications
  • 62. Sloan ED, Subramanian S, Matthews PN et al (1998) Quantifying hydrate formation and kinetic inhibition. Ind Eng Chem Res 37(8):3124–3132
  • 63. Smith DH, Seshadri K, Uchida T et al (2004) Thermodynamics of methane, propane, and carbon dioxide hydrates in porous glass. Aiche J 50(7):1589–1598
  • 64. Su M, Sha ZB, Qiao SH et al (2015) Sedimentary evolution since quaternary in the Shenhu hydrate drilling area, northern South China Sea. Chin J Geophys 58(8):2975–2985
  • 65. Subramanian S, Ballard AL, Kini RA et al (2000) Structural transitions in methane + ethane gas hydrates-part I: upper transition point and applications. Chem Eng Sci 55(23):5763–5771
  • 66. Uchida T, Moriwaki M, Takeya S et al (2004) Two-step formation of methane–propane mixed gas hydrates in a batch-type reactor. Aiche J 50(2):518–523
  • 67. Wang XJ, Hutchinson DR, Wu SG et al (2011) Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area South China Sea. J Geophys Res 116:B05102
  • 68. Wei J, Liang J, Lu J, Zhang W, He Y (2019) Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea-results of the fifth gas hydrate drilling expedition. Mar Pet Geol 110:287–298
  • 69. Wei J, Wu T, Zhu L et al (2021) Mixed gas sources induced co-existence of sI and sII gas hydrates in the Qiongdongnan Basin, South China Sea. Mar Pet Geol 128:105024
  • 70. Wood WT, Stoffa PL, Shipley TH (1994) Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J Geophys Res 99:9681–9695
  • 71. Wu SG, Zhang GX, Huang YY et al (2005) Gas hydrate occurrence on the northern slope of the northern South China Sea. Mar Petrol Geol 22(3):403–412
  • 72. Wu NY, Yang SX, Wang HB (2009) Fluid transport system for gas hydrate accumulation in the Shenhu area of the northern slope of the South China Sea. Chin J Geophys 52(6):1641–1650
  • 73. Ye JL, Qin XW, Xie WW et al (2020) The second natural gas hydrate production test in the South China Sea. China Geol 3:197–209
  • 74. Zhang Z, Mcconnell DR, Han DH (2012) Rock physics-based seismic trace analysis of unconsolidated sediments containing gas hydrate and free gas in green canyon 955, northern Gulf of Mexico. Mar Pet Geol 34(1):119–133
  • 75. Zhang W, Liang J, Lu JA et al (2017) Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea. Petrol Explor Dev 44(5):708–719
  • 76. Zhu WL, Zhang GC, Gao L (2008) Geological characteristics and exploration objectives of hydrocarbons in the northern continental margin basin of South China Sea. Acta Petrol Sin 29(1):1–9
  • 77. Zhu WL, Huan GB, Mi L et al (2009) Geochemistry, origin, and deep-water exploration potential of natural gases in the pearl river mouth and Qiongdongnan basins, South China Sea. AAPG Bull 93(6):741–761
  • 78. Zhu WL, Zhong K, Li Y et al (2012) Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Sci Bull 57(24):3121–3129
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-585b1d0d-8cb0-4c3f-a13b-cc20b81d6f69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.