PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ domieszkowania na właściwości węglika krzemu (SiC) : przegląd

Autorzy
Identyfikatory
Warianty tytułu
EN
The influence of doping on properties of the silicon carbide (SiC) : a review
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono przegląd literatury dotyczący domieszkowania węglika krzemu (SiC) – materiału półprzewodnikowego perspektywicznego dla szeregu istotnych zastosowań w sensoryce, spintronice, optoelektronice oraz w przyrządach półprzewodnikowych dużej mocy, wielkiej częstotliwości i wysokich temperatur. Zaprezentowano podstawowe parametry domieszek oraz ich wpływ na właściwości elektryczne, magnetyczne i optyczne SiC. Na tle doniesień literaturowych pokazano własne wyniki badań właściwości optycznych domieszkowanych kryształów SiC otrzymanych metodą transportu fizycznego z fazy gazowej (PVT).
EN
The paper presents a review of the literature which concerns a doping of the silicon carbide (SiC) – a semiconductor material which is a prospective material for many of important applications in sensorics, spintronics, optoelectronics and for high-power, high-frequency and high-temperature semiconductor devices. Basic parameters of dopants and their influence on electrical, magnetic and optical properties of SiC have been presented. Own results of investigations of optical properties of doped SiC crystals, obtained by physical vapor transport method (PVT), have been shown on the background of the literature.
Rocznik
Strony
67--83
Opis fizyczny
Bibliogr. 97 poz., il., rys., wykr.
Twórcy
  • Instytut Technologii Materiałów Elektronicznych, Warszawa
Bibliografia
  • [1] R. R. Siergiej, R. C. Clarke, S. Sriram, A. K. Agarwal, R. J. Bojko, A. W. Morse, V. Balakrishna, M. F. MacMillan, A. A. Burk Jr., C. D. Brandt, Advances in SiC materials and devices: an industrial point of view, Mater. Sci. Eng. B 61–62 (1999) 9–17.
  • [2] L. Liu, J. H. Edgar, Substrates for galium nitride epitaxy, Mater. Sci. Eng. R 37 (2002) 61–127.
  • [3] N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, H. Yashiro, Growth of large high-quality SiC single crystals, J. Cryst. Growth 237-239 (2002) 1180–1186.
  • [4] S. F. Avramenko, V. S. Kiselev, M. Ya. Valakh, V. G. Visotski, Investigation of structural perfection of SiC ingots grown by a sublimation method, Quantum Electronics & Optoelectronics 2 (1999) 76–79.
  • [5] T. Ciuk, J. Krupka, C. Jastrzebski, J. Judek, W. Strupinski, S. Butun, E. Ozbay, M. Zdrojek, Contactless magnetoresistance in large area epitaxial graphene grown on SiC substrates, J. Mater. Sci. Eng. A 2 (2012) 489–493.
  • [6] H. N. Jayatirtha, M. G. Spencer, C. Taylor, W. Greg, Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method, J. Cryst. Growth 174 (1997) 662–668.
  • [7] http://www.cree.com/LED-Chips-and Materials/Materials.
  • [8] D. Schulz, G. Wagner, J. Dolle, K. Irmscher, T. Müller, H.-J. Rost, D. Siche, J. Wollweber, Impurity incorporation during sublimation growth of 6H bulk SiC, J. Cryst. Growth 198/199 (1999) 1024–1027.
  • [9] Z. Huang, Q. Chen, Magnetic properties of Cr-doped 6H-SiC single crystals, J. Magn. Magn. Mater. 313 (2007) 111–114.
  • [10] N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R. Abernathy, S. J. Pearton, R. G. Wilson, J. M. Zavada, Y. D. Park, Magnetic and structural properties of Fe, Ni, and Mn-implanted SiC, J. Vac. Sci. Technol. A 20 (2002) 579–582.
  • [11] C. Dupeyrat, A. Declemy, M. Drouet, D. Eyidi, L. Thome, A. Debelle, M. Viret, F. Ott, Microstructural and magnetic study of Fe-implanted 6H-SiC, Physica B 404 (2009) 4731–4734.
  • [12] C. Dupeyrat, A. Declemy, M. Drouet, A. Debelle, L. Thome, Fe-implanted SiC as a potential DMS: X-ray diffraction and Rutherford backscattering and channelling study, Nuclear Instruments and Methods in Physics Research B 268 (2010) 2863–2865.
  • [13] B. Song, J. K. Lian, H. Li, M. Lei, H. Q. Bao, X. L. Chen, G. Wang, New experimental evidence for origin of ferromagnetism ordering in Fe-doped SiC, Physica B 403 (2008) 2897–2901.
  • [14] A. Los, V. Los, Magnetic states of transition metal impurities in silicon carbide, J. Phys.: Condens. Matter. 21 (2009) 206004_1-11.
  • [15] S. J. Pearton, N. Theodoropoulou, M. E. Overberg, C. R. Abernathy, A. F. Hebard, S. N. G. Chu, R. G. Wilson, J. M. Zavada, Characterization of Ni-implanted GaN and SiC, Mater. Sci. Eng. B 94 (2002) 159–163.
  • [16] S. J. Pearton, Y. D. Park, C. R. Abernathy, M. E. Overberg, G. T. Thaler, J. Kim, F. Ren, J. M. Zavada, R. G. Wilson, Ferromagnetism in GaN and SiC doped with transition metals, Thin Solid Films 447–448 (2004) 493–501.
  • [17] B. Song, H. Bao, H. Li, M. Lei, J. Jian, J. Han, X. Zhang, S. Meng, W. Wang, X. Chen, Magnetic properties of Mn-doped 6H-SiC, Appl. Phys. Lett. 94 (2009) 102508_1-3.
  • [18] M. Izadifard, M. E. Ghazi, S. Hosaini, Effects of Mn substitution on magnetic and electrical properties of b-SiC semiconductor, Applied Physics Research 2 (2010) 3–10.
  • [19] B. Song, X. L. Chen, J. C. Han, G. Wang, H. Q. Bao, L. B. Duan, K. X. Zhu, H. Li, Z. H. Zhang, W. Y. Wang, W. J. Wang, X. H. Zhang, S. H. Meng, Raman scattering and magnetizations studies of (Al, Cr)-codoped 4H-SiC, J. Magn. Magn. Mater. 323 (2011) 2876–2882.
  • [20] X. H. Zhang, J. C. Han, J. G. Zhou, C. Xin, Z. H. Zhang, B. Song, Ferromagnetism in homogeneous (Al, Co)-doped 4H-silicon carbides, J. Magn. Magn. Mater. 363 (2014) 34–42.
  • [21] L. Lin, Z. Zhang, H. Tao, M. He, G. Huang, B. Song, Density functional study on ferromagnetism in (Al, Fe)-codoped 4H-SiC, Computational Materials Science 87 (2014) 72–75.
  • [22] H. Zheng, Y. Zhang, Y. Yan, Z. Lv, H. Yang, X. Liu, Y. Gu, W. Zhang, Experimental observation and theoretical calculation of magnetic properties in Fe-doped cubic SiC nanowires, Carbon 78 (2014) 288–297.
  • [23] S. B. Ma, Y. P. Sun, B. C. Zhao, P. Tong, X. B. Zhu, W. H. Song, Magnetic properties of Mn-doped cubic silicon carbide, Physica B 394 (2007) 122–126.
  • [24] Y-S. Kim, Y-Ch. Chung, S-Ch. Yi, Electronic structure and half-metallic property of Mn-doped b-SiC diluted magnetic semiconductor, Mater. Sci. Eng. B 126 (2006) 194–196.
  • [25] W. Wang, F. Takano, H. Ofuchi, H. Akinaga, Local structural, magnetic and magneto-optical properties of Mn-doped SiC films prepared on a 3C-SiC(001) wafer, New Journal of Physics 10 (2008) 055006_1–12.
  • [26] W. Wang, F. Takano, H. Ofuchi, H. Akinaga, Magnetic properties of transparent SiC : Mn films synthesized on SiC substrates, Journal of Magnetism and Magnetic Materials 310 (2007) 2141–4214.
  • [27] C. Zhao, C. Zhen, Y. Li, L. Ma, C. Pan, D. Hou, Ferromagnetism in Cu-doped silicon carbide, Solid State Communications 152 (2012) 752–756.
  • [28] J. F. Justo, W. V. M. Machado, L. V. C. Assali, Behavior of 3d-transition metals in different SiC polytypes, Physica B 376-377 (2006) 378-381.
  • [29] Ch. Zhang, Density-functional theory study of long-range ferromagnetic properties in Mg-doped SiC, Sol. Stat. Commun. 150 (2010) 2310–2313.
  • [30] Y. Dou, H. Jin, M. Cao, X. Fang, Z. Hou, D. Li, S. Agathopoulos, Structural stability, electronic and optical properties of Ni-doped 3C-SiC by first principles calculation, Journal of Alloys and Compounds 509 (2011) 6117–6122.
  • [31] T. Ujihara, K. Seki, R. Tanaka, S. Kozawa, Alexander, K. Morimoto, K. Sasaki, Y. Takeda, High-quality and large-area 3C-SiC growth on 6H-SiC(0001) seed crystal with top-seeded solution method, J. Cryst. Growth 318 (2011) 389–393.
  • [32] J. Biskupek, U. Kaiser, H. Lichte, A. Lenk, T. Gemming, G. Pasold, W. Witthuhn, TEM-characterization of magnetic samariumand cobalt-rich-nanocrystals formed in hexagonal SiC, Journal of Magnetism and Magnetic Materials 293 (2005) 924–937.
  • [33] P. Miranda, U. Wahl, N. Catarino, J.G. Correia, E. Alves, Damage formation and recovery in Fe implanted 6H-SiC, Nuclear Instruments and Methods in Physics Research B 286 (2012) 89–92.
  • [34] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (2000) 1019–1022.
  • [35] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. Frazier, F. Ren, A. F. Hebard, Y. D. Park, D. P. Norton, W. Tang, M. Stavola, J. M. Zavada, R. G. Wilson, Effects of defects and doping on wide band gap ferromagnetic semiconductors, Physica B 340-342 (2003) 39–47.
  • [36] S. J. Pearton, M. E. Overberg, G. T. Thaler, C. R. Abernathy, J. Kim, F. Ren, N. Theodoropoulou, A. F. Hebard, Y. D. Park, Room temperature ferromagnetism in GaMnN and GaMnP, Phys, Stat. Sol. (a) 195 (2003) 222–227.
  • [37] M. Yuonesi, M. Yaghobi, H. Reza Alae, Role of Al atom on structural and magnetic properties of β-SiC:Cr, Physica B 406 (2011) 2962–2966.
  • [38] Z. C. Lv, X. P. Ma, H. W. Zheng, R. An, C. X. Peng, J. D. Liu, B. J. Ye, C. L. Diao, X. Y. Liu, W. F. Zhang, Room temperature ferromagnetism induced by N-ion implantation in 6H-SiC single crystal, Materials Letters 93 (2013) 374–376.
  • [39] Y. Liu, G. Wang, S. C. Wang, J. H. Yang, L. Chen, X. B. Qin, B. Song, B. Y. Wang, X. L. Chen, Defect-induced magnetism in neutron irradiated 6H-SiC single crystals, Phys. Rev. Lett. 106 (2011) 087205_1–4.
  • [40] Y. An, L. Duan, X. Li, Z. Wu, J. Liu, Investigation of microstructures and optical properties in Mn-doped SiC films, Applied Surface Science 258 (2012) 7070–7074.
  • [41] S. Wang, Y. An, X. Li, Z. Wu, J. Liu, Effect of Mn doping on the structural, magnetic and transport properties of SiC films, Journal of Alloys and Compounds 584 (2014) 339–343.
  • [42] K. J. Kim, Y.-W. Kim, Fe doping and magnetic properties of zincblende SiC ceramics, Jounal of the European Ceramic Society 32 (2012) 1149–1155.
  • [43] Y. Koshka, M. Mazzola, S. Yingquan, and C. U. Pittman, Jr., Vanadium doping of 4H-SiC from a solid source: photoluminescence investigation, Journal of Electronic Materials 30 (2001) 220–223.
  • [44] W. J. Choyke, R. P. Devaty, Progress in the study of optical and related properties of SiC since 1992, Diamond and Related Materials 6 (1997) 1243–1248.
  • [45] J. Senzaki, K. Fukuda, S. Imai, Y. Tanaka, N. Kobayashi, H. Tanoue, H. Okushi, K. Arai, The post-annealing temperature dependences of electrical properties and surface morphologies for arsenic ion-implanted 4H-SiC at high temperature, Applied Surface Science 159-160 (2000) 544–549.
  • [46] M. Bickermann, R. Weingartner, A. Winnacker, On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield, J. Cryst. Growth 254 (2003) 390–399;
  • [47] S. A. Reshanov, Growth and high temperature performance of semi-insulating silicon carbide, Diamond and Related Materials 9 (2000) 480–482.
  • [48] B. Krishnan, S. Kotamraju, R. V. K. G. Thirumalai, Y. Koshka, Vanadium doping using VCl4 source during the chloro-carbon epitaxial growth of 4H-SiC, J. Cryst. Growth 321 (2011) 8–14.
  • [49] V. Lauer, G. Bremond, A. Souifi, G. Guillot, K. Chourou, M. Anikin, R. Madar, B. Clerjaud, C. Naud, Electrical and optical characterization of vanadium in 4H and 6H-SiC, Mater. Sci. Eng. B 61-62 (1999) 248–252.
  • [50] M. E. Zvanut, W. Lee, W. C. Mitchel, W. D. Mitchell, G. Landis, The acceptor level for vanadium in 4H and 6H SiC, Physica B 376-377 (2006) 346–349.
  • [51] M. Bickermann, D. Hofmann, T. L. Straubinger, R. Weingartner, P. J. Wellmann, A. Winnacker, On the preparation of semi-insulating SiC bulk crystals by the PVT technique, Applied Surface Science 184 (2001) 84–89.
  • [52] M. Bickermann, B. M. Epelbaum, D. Hofmann, T. L. Straubinger, R. Weingartner, A. Winnacker, Incorporation of boron and vanadium during PVT growth of 6H-SiC crystals, J. Cryst. Growth 233 (2001) 211–218.
  • [53] J. R. Jenny, M. Skowronski, W. C. Mitchel, H. M. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, Deep level transient spectroscopic and Hall effect investigation of the position of the vanadium acceptor level in 4 H and 6H SiC, Appl. Phys. Lett. 68 (1996) 1963–1965.
  • [54] K. Racka-Dzietko, E. Tymicki, K. Grasza, M. Raczkiewicz, R. Jakieła, M. Kozubal, E. Jurkiewicz-Wegner, A. Brzozowski, R. Diduszko, M. Piersa, K. Kościewicz, M. Pawłowski, J. Krupka, Characterization of vanadium doped 4H- and 6H-SiC grown by PVT method using the open seed backside, Materials Science Forum 645-648 (2010) 21–24.
  • [55] W. C. Mitchel, W. D. Mitchell, M. E. Zvanut, G. Landis, High temperature Hall effect measurements of semi-insulating 4H-SiC substrates, Solid-State Electronics 48 (2004) 1693–1697.
  • [56] W. Hartung, M. Rasp, D. Hofmann, A. Winnacker, Analysis of electronic levels in SiC: V, N, Al powders and crystals using thermally stimulated luminescence, Materials Science and Engineering B 61-62 (1999) 102–106.
  • [57] T. L. Straubinger, M. Bickermann, R. Weingärtner, P. J. Wellmann, A. Winnacker, Aluminum p-type doping of silicon carbide crystals using a modified physical vapor transport growth method, J. Cryst. Growth 240 (2002) 117–123.
  • [58] P. J. Wellmann, R. Weingärtner, M. Bickermann, T. L. Straubinger, A. Winnacker, Optical quantitative determination of doping levels and their distribution in SiC, Materials Science and Engineering B 91-92 (2002) 75–78.
  • [59] A. Avdonin, K. Racka, E. Tymicki, K. Grasza, R. Jakieła, M. Pisarek, W. Dobrowolski, Structural and electrical properties of SiC grown by PVT method in the presence of the cerium vapor, Acta Physica Polonica A 124 (2013) 761–764.
  • [60] M. E. Zvanut, J. van Tol, Nitrogen-related point defect in 4H and 6H-SiC, Physica B 401-402 (2007) 73–76.
  • [61] K. Racka, A. Avdonin, M. Sochacki, E. Tymicki, K. Grasza, R. Jakieła, B. Surma, W. Dobrowolski, Magnetic, optical and electrical characterization of SiC doped with scandium during the PVT growth, Journal of Crystal Growth 413 (2015) 86–93.
  • [62] S. Limpijumnong, W. R. L. Lambrecht, S. N. Rashkeev, B. Segall, Optical-absorption bands in the 1–3 eV range in n-type SiC polytypes, Phys. Rev. B 59 (1999) 12890–12899.
  • [63] K. Irmscher, Electrical properties of SiC: characterization of bulk crystals and epilayers, Materials Science and Engineering B91-92 (2002) 358–366.
  • [64] N. Ohtani, M. Katsuno, M. Nakabayashi, T. Fujimoto, H. Tsuge, H. Yashiro, T. Aigo, H. Hirano, T. Hoshino, K. Tatsumi, Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport, J. Cryst. Growth 311 (2009) 1475–1481.
  • [65] W. Suttrop, G. Pensl, P. Lanig, Boron-related deep centers in 6H-SiC, Appl. Phys. A 51 (1990) 231-237.
  • [66] W. C. Mitchel, M. Roth, A. O. Evwaraye, P. W. Yu, S. R. Smith, Electronic properties of boron in p-type bulk 6H-SiC, Journal of Electronic Materials 25 (1996) 863–867.
  • [67] J. R. Jenny, M. Skowronski, W. C. Mitchel, H. M. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, Optical and electrical characterization of boron impurities in silicon carbide grown by physical vapor transport, J. Appl. Phys. 79 (1996) 2326–2331.
  • [68] A. Henry, M. S. Janson, E. Janzén, Boron-related luminescence in SiC, Physica B 340-342 (2003) 141–145.
  • [69] A. A. Lebedev, Deep level defects in silicon carbide, in: M. Shur, S. Rumyantsev, M. Levinshtein (Eds.), SiC Materials And Devices, 2, World Scientific Publishing Co. Pte. Ltd., 2007, 29–73.
  • [70] A. Itoh, H. Akita, T. Kimoto, H. Matsunami, High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy, Appl. Phys. Lett. 65 (1994) 1400–1402.
  • [71] K. Racka, E. Tymicki, K. Grasza, I. A. Kowalik, D. Arvanitis, M. Pisarek, K. Kościewicz, R. Jakieła, B. Surma, R. Diduszko, D. Teklińska, J. Mierczyk, J. Krupka, Growth of SiC by PVT method in the presence of cerium dopant, Journal of Crystal Growth 377 (2013) 88–95.
  • [72] K. Racka, E. Tymicki, K. Grasza, R. Jakieła, M. Pisarek, B. Surma, A. Avdonin, P. Skupiński, J. Krupka, Growth of SiC by PVT method with different sources for doping by a cerium impurity, CeO2 or CeSi2, Journal of Crystal Growth 401 (2014) 677–680.
  • [73] P. G. Baranov, I. V. Ilyin, E. N. Mokhov, V. A. Khramtsov, Identification of iron in 6H-SiC crystals by electron paramagnetic resonance, Semicond. Sci. Technol. 16 (2001) 39–43.
  • [74] H. K. Song, S. Y. Kwon, H. S. Seo, J. H. Moon, J. H. Yim, J. H. Lee, H. J. Kim, J. K. Jeong, Homoepitaxial growth and electrical characterization of iron-doped semi-insulating 4H-SiC epilayer, Appl. Phys. Lett. 89 (2006) 152112_1–3.
  • [75] S. Bet, N. Quick, A. Kar, Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state, Acta Materialia 56 (2008) 1857–1867.
  • [76] Yu.M. Tairov, I. I. Khlebnikov, V. F. Tsvetkov, Investigation of silicon carbide single crystals doped with scandium, Phys. Stat. Sol. A 25 (1974) 349–357.
  • [77] J.-M. Spaeth, S. Greulich-Weber, M. März, E. N. Mokhov, E. N. Kalabukhova, Electron paramagnetic resonance of the scandium acceptor in 4H and 6H silicon carbide, Physica B 273–274 (1999) 667–671.
  • [78] M. März, J. Reinke, S. Greulich-Weber, J.-M. Spaeth, H. Overhof, E. N. Mokhov, A. D. Roenkov, E. N. Kalabukhova, Electron paramagnetic resonance of the scandium acceptor in 6H silicon carbide, Solid State Commun. 98 (1996) 439–443.
  • [79] P. G. Baranov, I. V. Il’in, E. N. Mokhov, A. D. Roenkov, V. A. Khramtsov, Electron paramagnetic resonance of scandium in silicon carbide, Fiz. Tverd. Tela 39 (1997) 52–57.
  • [80] U. Gerstmann, S. Greulich-Weber, E. Rauls, J.-M. Spaeth, E. N. Kalabukhova, E. N. Mokhov, F. Mauri, New insight in scandium-mediated growth techniques: Sc-related defects in 4H-SiC and 6H-SiC, Mater. Sci. Forum 556–557 (2007) 469–472.
  • [81] S. Bet, N. Quick, A. Kar, Laser doping of chromium in 6H-SiC for white light emitting diodes, Journal of Laser Applications 20 (2008) 43–49.
  • [82] W. J. Choyke, R. P. Devaty, L. L. Clemen, M. Yoganathan, G. Pensl, Ch. Hässler, Intense erbium-1.54-μm photoluminescence from 2 to 525 K in ion-implanted 4H, 6H, 15R, and 3C SiC, Appl. Phys. Lett. 65 (1994) 1668–1670.
  • [83] K. Awahara, S. Uekusa, T. Goto, T. Kobayashi, M. Kumagai, Luminescence properties of Er implanted p-type and n-type 3C-SiC/Si, Nuclear Instruments and Methods in Physics Research B 148 (1999) 507–511.
  • [84] P. G. Baranov, I. V. Ilyin, E. N. Mokhov, Electron Paramagnetic Resonance of erbium in bulk silicon carbide crystals, Solid Stat. Commun. 103 (1997) 291–295.
  • [85] P. G. Baranov, I. V. Il’in, E. N. Mokhov, V. A. Khramtsov, Transition and rare-earth elements in the SiC and GaN wide-gap semiconductors: recent EPR studies, Phys. Solid Stat. 41 (1999) 783–785.
  • [86] A. Kozanecki, C. Jeynes, B. J. Sealy, A. Nejim, Ion beam analysis of 6H-SiC implanted with erbium and ytterbium ions, Nuclear Instruments and Methods in Physics Research B 136-138 (1998) 1272–1276.
  • [87] J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, R. Moncorge, Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+, Er3+ crystal laser at 1554 nm, Appl. Phys. Lett. 64 (1994) 1189–1191.
  • [88] P. J. Wellmann, S. Bushevoy, R. Weingärtner, Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements, Materials Science and Engineering B 80 (2001) 352–356.
  • [89] P. J. Wellmann, R. Weingärtner, Determination of doping levels and their distribution in SiC by optical techniques, Materials Science and Engineering B 102 (2003) 262–268.
  • [90] G. B. Dubrovskii, A. A. Lepneva, E. I. Radovanova, Optical absorption associated with superlattice in silicon carbide crystals, Phys. Status Solidi (b) 57 (1973) 423–431.
  • [91] R. Weingärtner, M. Bickermann, S. Bushevoy, D. Hofmann, M. Rasp, T. L. Straubinger, P. J. Wellmann, A. Winnacker, Absorption mapping of doping level distribution in n-type and p-type 4H-SiC and 6H-SiC, Materials Science and Engineering B 80 (2001) 357–361.
  • [92] E. Neyret, G. Ferro, S. Juillaguet, J. M. Bluet, C. Jaussaud, J. Camassel, Optical investigation of residual doping species in 6H and 4H-SiC layers grown by chemical vapor deposition, Materials Science and Engineering B 61-62 (1999) 253–257.
  • [93] F. Engelbrecht, J. Zeman, G. Wellenhofer, C. Peppermüller, R. Helbig, G. Martinez, U. Rössler, Hydrostatic-pressure coefficient of the indirect gap and fine structure of the valence band of 6H-SiC, Phys. Rev. B 56 (1997) 7348–7355.
  • [94] J. Baur, M. Kunzer, J. Schneider, Transition metals in SiC polytypes, as studied by magnetic resonance techniques, J. Phys. Status Solidi (a) 162 (1997) 153–172.
  • [95] Yu.Yu. Bacherikov, R. V. Konakova, O. S. Lytvyn, O. B. Okhrimenko, A. M. Svetlichnyi, N. N. Moskovchenko, Morphology and optical properties of titanium-doped porous silicon carbide layers, Technical Physics Letters 32 (2006) 140–142.
  • [96] T. Kimoto, H. Nishino, T. Ueda, A. Yamashita, W. S. Yoo, H. Matsunami, Photoluminescence of Ti doped 6H-SiC grown by vapor phase epitaxy, Japanese Journal of Applied Physics 30 (1991) 289–291.
  • [97] Yu.M. Suleimanov, I. Zaharchenko, S. Ostapenko, Luminescence characterization of titanium related defects in 6H-SiC, Physica B 308-310 (2001) 714–717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5859fa4c-0c51-42d7-b54f-6c597a14fbc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.