
Computer Applications in Electrical Engineering
Vol. 12 2014

399

Parallel uniform random number generator in FPGA

Piotr Kozierski, Marcin Lis, Andrzej Królikowski

Poznań University of Technology
60-965 Poznań, ul. Piotrowo 3a, e-mail: piotr.kozierski@gmail.com

The article presents approach to implementation of random number generator in
FPGA unit. The objective was to select a generator with good properties
(correlation values and fidelity of probability density function were taken into
account). During the design focused on logical elements so that the pseudo-random
number generation time depend only on the electrical properties of the system. The
results are positive, because the longest time determining the pseudorandom
number was 16.7ns for the “slow model” of the FPGA and 7.3ns for “fast model”,
while one clock cycle lasts 20ns. Additionally the parallel random number generator
has been proposed, composed of 10 simple generator modules. After modules
connecting, maximum time for generation of 10 random numbers was equal 41.0ns
for the “slow model” and 16.6ns for the “fast model”.

KEYWORDS: random number generator, uniform noise, FPGA unit, logic functions

1. Introduction

 FPGA unit is primarily intended for parallel computations. Its use can reduce
the time of calculations even by several orders of magnitude [7]. However, the
disadvantage of the system is the lack of many functions, which are basic in
other languages. One of those functions, on which article is focused, is the
calculation of pseudo-random number with uniform distribution. It is also an
element required for other noise generators, as for example Ziggurat Method
[6], Alias Method [1] or Ratio Method [5]. However, there are also methods that
do not use uniform noise, such as Wallace Method [4].
 The approach proposed in this article assumes implementation of the
standard algorithm for generation of the random numbers. The difference is that
the whole algorithm should be made based only on logical gates, so that it will
have a very high speed, and the subsequent generation of the random number
will be able to take place in each clock cycle (every 20ns).
 Then is has been assumed that in every clock cycle may be needed more
than one random number. Therefore 10 modules have been connected in such a
way that output of first module is input of second module, output of second
module is input of third module, and so on. For such a connection the
computation time was longer than 20ns, but definitely less than 10 clock cycles.

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 400

The second section describes the type of the random number generator,
which has been selected for implementation. In the third chapter, one can
read about parameter selection of pseudo-random number generator. The
method for module implementing on FPGA is presented in chapter four,
while in the fifth chapter results of the time simulation were discussed.
Chapter six concludes the article.
 This paper basis on the article [3] prepared on the ZKwE 2014 conference.

2. Random number generator

 The algorithm can be represented by short formula

   mmodcXaX n1n  , (1)
where X is random number, and parameters a , c and m are chosen by the
programmer. This algorithm was proposed already in the 50s of the
twentieth century [2], but it is still often used in less sophisticated random
number generators. This type of generator has been chosen to
implementation in FPGA unit.
 All generator parameters were selected in such a way, to reduce the number
of performed calculations, as much as possible. Therefore, the value m is equal
to 322 (the assumption has been made that the numbers are 32-bit), to save time
needed to calculating the modulo. Sometimes one can find the proposal to
establish the parameter m larger than it is needed, to increase the period after
which sequentially generated numbers will be repeated.
 In the particular case it can be assumed that parameter 0c  , however, in this
case, all generated numbers would be even (or odd). One can check that in order to
generate numbers of both, even and odd, parameters a and c must be odd.
 Indicated already that the logical elements must be used to implementation
and in FPGA all numbers greater than 1 are represented by the bit vector. Thus,
in order to reduce the number of operations, chosen parameters should have the
minimum number of non-zero bits (especially parameter a).
 Below it has been shown how big is the difference in multiplying the 8-bit
number by 193 (211000001) and by 179 (210110011). One can see, that each
additional non-zero bit in the parameter a increases the number of logical
elements required in algorithm implementation.

0123456789101112131415

01234567

01234567

01234567

01234567

ZZZZZZZZZZZZZZZZ
XXXXXXXX

XXXXXXXX
XXXXXXXX
10000011

XXXXXXXX





P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 401

0123456789101112131415

01234567

01234567

01234567

01234567

01234567

01234567

YYYYYYYYYYYYYYYY
XXXXXXXX

XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
11001101

XXXXXXXX





 Therefore only 86 primes have been selected, in which the number of non-
zero bits is 2 or 3, and among them a satisfactory values for the generator have
been sought.

3. Choice of generator parameters

Certain parameters have been chosen based on the calculated properties of
pseudo-random numbers sequence – autocorrelation and histogram.
 One of the good generator features should be low autocorrelation value [8]

     




 
i1N

1n
xx inxnx

N
1iR̂ (2)

for lags 0i  , where N is length of pseudo-random number sequence and
 nx is n-th number of this sequence. For the calculation of the autocorrelation,

function in Matlab was used, which calculates the value without scaling (default
setting)

     




 
i1N

1n
inxnxiR̂ (3)

 Parameter, based on the autocorrelation values, has been proposed

  



100

1i

2
rl iR̂c (4)

which value was directly compared between different pairs of generator
parameters  c,a .
 The second property, which has been studied, is the histogram. The sum of
square errors between true value of probability density function (PDF) and the
histogram value has been calculated. This can be represented by the formula













 


M

1j

2

j

jj2

E
EO

h (5)

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 402

where M is the number of intervals of probability density function, jO is the
number of randomly selected values from the j-th interval and jE is theoretical
number of values in j-th interval.

3.1. Simulations for different a and c parameters

 Based on values of rlc and 2h the best pair of generator parameters  c,a
has been chosen. The length of generated sequence of random numbers was
equal to 510N  samples. The simulation has been repeated 100 times for each
pair of parameters, with different initial value. Some typical results, obtained in
the simulations, have been shown in Table 1.

Table 1. Results of h2 and crl obtained for different generator parameters

a, c h2 σ(h2) crl σ(crl)
0511 222a 

023 222c 
0.0994 0.0156 0.000989 0.000133

0919 222a 
0118 222c 

0.0994 0.0141 0.001343 0.000217

0918 222a 
0619 222c 

0.0992 0.0140 0.000963 0.000153

01330 222a 
0112 222c 

0.1278 0.0191 0.001877 0.000754

01221 222a 
0619 222c 

0.0945 0.0130 0.000795 0.000110

01529 222a 
01330 222c 

0.0815 0.0090 0.000738 0.000214

01330 222a 
01720 222c 

0.0900 0.0132 0.007080 0.003048

01930 222a 
01720 222c 

0.0017 0.0002 0.001390 0.000316

02127 222a 
01114 222c 

0.0488 0.0020 0.000563 0.000089

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 403

 Among the performed simulations the best was the last example in Table 1
(for 136314881222a 02127  and 18433222c 01114 ). Although
one can notice better results for 2h (second last example in Table 1), however
the parameter based on correlation was finally considered as the most important,
so the two parameters with the lowest value of rlc have been chosen.

4. Construction of module in FPGA

 To better illustrate the operation and construction of the module, it has been
shown on the 8-bit example, for some generator parameters  5c,41a  . The
multiplication has been shown below.

01234567

01234567

01234567

01234567

01234567

YYYYYYYY
XXXXXXXX

XXXXXXXX
XXXXXXXX
10010100

XXXXXXXX





 High-order bits are not shown, because the result of the module should be 8-
bit number, so only 0:7Y bits are visible. To the result of the multiplication
should be added the value of 5c  , and therefore the new random number can
be represented by the sum:

01234567

012

01234

01234567

YYYYYYYY
10100000

XXX
XXXXX

XXXXXXXX



 To calculate the 0Y value, it must be perform the XOR operation on the
values 0X and 1. 1Y value depends not only on 1X , but also on the previous
sum – if there is a carry (wP) or not. Additionally, in the case where four or
more bits are summed, the carry affecting on the next bit (wR) should be taken
into account. Therefore, the final form of the sum should be as follows:

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 404

01234567

012

01234

01234567

0123456

5

YYYYYYYY
10100000

XXX
XXXXX

XXXXXXXX
PPPPPPP

R



 Therefore, the smallest modules which have been created are 2-6 bits
summators, and then these modules have been combined together. For example,
4 bits summator module has 4 inputs (number of bits) and 3 outputs (wY , wP
and wR), where one output is the part of the result (wY) and two other outputs
(wP and wR) have been connected with inputs in next modules.
 In a such way 32-bit number generator has been created, for parameters

136314881222a 02127  and 18433222c 01114  .

4.1. Logical functions in modules

 Functions are different depending on the number of inputs. Marks & and |
means respectively logical operations AND and OR, ^ means XOR, whereas
~ means NOT. Logical functions describing the module outputs have been

presented below:
 for 2-bit summator module (inputs A and B)

B^AYw  (6)
B&APw  (7)

 for 3-bit summator module (inputs A, B and C)
C^B^AYw  (8)

    B|A&C|B&APw  (9)
 for 4-bit summator module (inputs A, B, C and D)

D^C^B^AYw  (10)
            D|B&C|A|D|C&B|A&R~P ww  (11)

D&C&B&ARw  (12)
 for 5-bit summator module (inputs A, B, C, D and E)

E^D^C^B^AYw  (13)
              B&A|E|C&D|B|A|E|D&C|B|A&R~P ww  (14)

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 405

       E&D&B&A|E&D&C&B|A|E|D&C&B&ARw  (15)
 for 6-bit summator module (inputs A, B, C, D, E and F)

F^E^D^C^B^AYw  (16)
    
               F|C&D|B|E|C|B&F|D|A|F|E|D&C|B|A&

&F&E&D&C&B&A|R~P ww  (17)

         
      

   D&C&B&A|F&E&B&A|
|F&E&D&C|F|E&D|C&B&A|

|F|E&D&C&B|A|F&E&D|C&B|ARw 
 (18)

 Based on these summators, module for 32-bits numbers generation has been
created.

4.2. Parallel generator

 Parallel generator has been created by serial connection of simple generator
modules (see Fig. 1), where first module has updated with a clock signal
register, whereas remained modules are updated continuously (responsive to
changes in input).

Fig. 1. Modules connection for parallel random numbers generation

5. Time simulation results

 The sequence of generated numbers obtained during simulation of created
module, was correct, which confirm the correctness of implementation.
 Time after which module output was steady also has been taken into
account. After generating 1000 consecutive numbers, the longest time period
obtained for the “slow model” was 16.725ns and for “fast model” – 7.338ns.
One can assumed that the maximum time generation of pseudo-random
numbers on real FPGA unit will be between the values obtained from
simulations.
 For parallel generation of 10 random numbers, steady output has been
obtained after maximum 41.034ns for “slow model”, and 16.634ns for “fast
model” (100000 consecutive numbers have been calculated).
 All time simulations were made using ModelSim® Altera® 6c and
Quartus® II 10.1 Web Edition programs.

P. Kozierski, M. Lis, A. Królikowski / Parallel uniform random number generator …

 406

6. Summary

 The method of generating pseudo-random numbers by an appropriate choice
of generator parameters has been proposed in the paper. Simultaneously one
should takes into account that the selected parameters should provide high-
speed operation of the module (1 clock cycle on the test FPGA lasts 20 ns).
Based on the simulation one can conclude that the module has been built
properly.
 With the combination of modules one can obtain more random number,
however in this case system clock (used in algorithm) must have lower
frequency (e.g. 10 MHz).

Further research will aim to verify the operation of the generator on a real
system and the implementation of pseudo-random number generator with a
Gaussian distribution.

References

[1] Ahrens J. H., Dieter U., An Alias Method for Sampling from the Normal

Distribution, Computing, Vol. 42, No. 2-3, 1989, pp. 159-170.
[2] Knuth D. E., The Art of Computer Programming, Addison-Wesley Publishing

Co., Vol. 2 Seminumerical Algorithms, 1981, pp. 1-37.
[3] Kozierski P., Lis M., Królikowski A., Implementation of Fast Uniform Random

Number Generator on FPGA, Poznan University of Technology Academic
Journals, Iss. 80, 2014, pp. 167-173.

[4] Lee D. U., Luk W., Villasenor J. D., Zhang, G., Leong P. H. W., A Hardware
Gaussian Noise Generator Using the Wallace Method, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, Vol. 13, No. 8, 2005, pp.
911-920.

[5] Leva J. L., A Fast Normal Random Number Generator, ACM Transactions on
Mathematical Software, Vol. 18, No. 4, December 1992, pp. 449-453.

[6] Marsaglia G., Tsang W. W., The ziggurat method for generating random
variables, Journal of Statistical Software, Vol. 5, No. 8, 2000, pp. 1-7.

[7] Mountney J., Obeid I., Silage D., Modular Particle Filtering FPGA Hardware
Architecture for Brain Machine Interfaces, Conf Proc IEEE Eng Med Biol Soc.
2011, pp. 4617-4620.

[8] Zieliński T., Cyfrowe przetwarzanie sygnałów: Od teorii do zastosowań,
Wydawnictwa Komunikacji i Łączności, Warszawa 2007, pp. 1-38.

