Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microorganisms living in the soil of arid rangelands play a key role in maintaining their health. These tiny creatures are agents of organic matter decomposition on which soil fertility depends. Species and quantitative composition of microorganisms is an indicator reflecting the direction of biological processes in the soil. In natural conditions, the ratio of different groups of microorganisms shows whether decomposition or synthesis of organic compounds, including humus, prevails. In agrocenoses where humans use organic and inorganic fertilizers, the study of microorganisms helps to assess the availability of nutrient elements to plants. Analysis of the soil microbial community also allows direct assessment of the effectiveness of biostimulant application, i.e. how well plants assimilate the applied macronutrients. The purpose of our study was to determine the health of the soil by the number and ratio of different groups of microorganisms, to identify whether the processes of decomposition (mineralization) or synthesis (immobilization) of nutrients prevail in the soil and to obtain reliable information on the availability of nutrients for plants. The study of microorganisms in the soil of arid pastures is a valuable tool for assessing their ecological state, as well as for developing more efficient and environmentally friendly farming methods.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
179--189
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- M. Auezov State University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
autor
- M. Auezov State University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
autor
- South-West Research Institute of Animal Husbandry and Crop Husbandry, Shymkent, 160012, Kazakhstan
autor
- Abai Kazakh National Pedagogical University, 13, Dostyk avenue, Almaty, 050010, Kazakhstan
autor
- South-West Research Institute of Animal Husbandry and Crop Husbandry, Shymkent, 160012, Kazakhstan
Bibliografia
- 1. Bailey K.L., Lazarovits G. 2003. Suppressing soilborne diseases with residue management and organic amendments. Soil and Tillage Research, Soil Agroecosystems: Impacts of Management on Soil Health and Crop Diseases, 72(2), 169–80. https://doi.org/10.1016/S0167-1987(03)00086-2.
- 2. Baymagambetova Z., Kedelbayev B.S., Seitkarimov A., Kalymbetov G., Sapargaliyeva B. 2024. Biostimulator for Arid Pastures in the South of Kazakhstan. Journal of Ecological Engineering, 25(1), 13145. https://doi.org/10.12911/22998993/174332.
- 3. Bhattacharjee, A., Dusan Velickovic D., Wietsma T.W., Bell S.L., Jansson J.K., Hofmockel K.S., Anderton C.R. 2020. Visualizing Microbial Community Dynamics via a Controllable Soil Environment. Systems, 5(1). 10.1128/msystems.00645-19. https://doi.org/10.1128/msystems.00645-19.
- 4. Bian Q., Zhao L., Cheng K., Jiang Y., Li D., Xie Z., Sun B., Wang X. 2024. Divergent Accumulation of Microbe- and Plant-Derived Carbon in Different Soil Organic Matter Fractions in Paddy Soils under Long-Term Organic Amendments. Agriculture, Ecosystems and Environment, 366. https://doi.org/10.1016/j.agee.2024.108934.
- 5. Cotrufo M.F., Wallenstein M.D, Boot C.M, Denef K., Paul E. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS)framework integrates plant litter decomposition with soilorganic matter stabilization: do labile plant inputs formstable soil organic matter? Global Change Biology, 19, 988–95. https://doi.org/10.1111/gcb.12113.
- 6. Czigány S., Sarkadi N., Lóczy D., Cséplő A., Balogh R., Fábián S.A., Ciglič R., et al. 2023. Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils. Sustainability, 15(6), 4925. https://doi.org/10.3390/su15064925.
- 7. Elhawat N., Kovács A.B., Antal G., Kurucz E., Domokos-Szabolcsy É., Fári M.G., Alshaal T. 2024. Living Mulch Enhances Soil Enzyme Activities, Nitrogen Pools and Water Retention in Giant Reed (Arundo Donax L.) Plantations. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-51491-z.
- 8. Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–90. https://doi.org/10.1038/nrmicro.2017.87.
- 9. Golnari M., Bahrami N., Milanian Z., Rabbani Khorasgani M., Asadollahi M.A., Shafiei R., Fatemi S.S.-A. 2024. Isolation and Characterization of Novel Bacillus Strains with Superior Probiotic Potential: Comparative Analysis and Safety Evaluation. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-51823-z.
- 10. Gonzalez A., Clemente J.C., Shade A., Metcalf J.L., Song S., Prithiviraj B., Palmer B.E., Knight R. 2011. Our microbial selves: what ecology can teach us. EMBO reports, 12(8), 775–84. https://doi.org/10.1038/embor.2011.137.
- 11. Green L.H. 2015. Diagnostic Medical Microbiology. Practical Handbook of Microbiology, Third Edition, 135–52. https://doi.org/10.1201/b17871.
- 12. Hafeez S., Aslanzadeh J. 2018. Biochemical ProfileBased Microbial Identification Systems. Advanced techniques in diagnostic microbiology: Volume 1: Techniques, Third Edition, 33–67. https://doi.org/10.1007/978-3-319-33900-9_3.
- 13. Herman D.J., Firestone M.K., Nuccio E., Hodge A. 2012. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiology Ecology, 80(1), 236–47. https://doi.org/10.1111/j.1574-6941.2011.01292.x.
- 14. Hu Y., Schmidhalter U. 2024. Annual consumption and types of synthetic nitrogen fertilizers: ammonia emission indicators for mitigation strategies in the European Union. Environmental and Sustainability Indicators, 22. https://doi.org/10.1016/j.indic.2024.100365.
- 15. Jansson J.K., Hofmockel K.S. 2020. Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35–46. https://doi.org/10.1038/s41579-019-0265-7.
- 16. Krause, S., Le Roux X., Niklaus P.A., Van Bodegom P.M., Lennon J.T., Bertilsson S., Grossart H.P., Philippot L., Bodelier P.L.E. 2014. Traitbased approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in microbiology, 5(May). https://doi.org/10.3389/fmicb.2014.00251.
- 17. Labarthe M.M., Maroniche G.A., Lamattina L., Creus C.M. 2024. Nitric oxide synthase expression in Pseudomonas Koreensis MME3 improves plant growth promotion traits. Applied Microbiology and Biotechnology, 108(1). https://doi.org/10.1007/s00253-024-13029-1.
- 18. Ye G., Banerjee S., He J.Z., Fan J., Wang Z., Wei X., Hu H.W., Zheng Y., Duan C., Wan S., Chen J., Lin Y. Manure application increases microbiome complexity in soil aggregate fractions: results of an 18-year field experiment. 2021. Agriculture, Ecosystems & Environment, 307, 107249. https://doi.org/10.1016/j.agee.2020.107249.
- 19. Nidhin, I.K., Chattopadhyay I. 2022. Emerging technologies in environmental microbiology: microbes in the environment. Environmental Microbiology: Emerging Technologies, 33–58. https://doi.org/10.1515/9783110727227-002.
- 20. Ochoa-Hueso R. 2017. Global change and the soil microbiome: a human-health perspective. Frontiers in Ecology and Evolution, 5(July). https://doi.org/10.3389/fevo.2017.00071.
- 21. Patel C., Singh J., Karunakaran A., Ramakrishna W. 2023. Evolution of Nano-Biofertilizer as a Green Technology for Agriculture. Agriculture, 13(10), 1865. https://doi.org/10.3390/agriculture13101865.
- 22. Peng Q., Zheng H., Yu H., Meng K., Cheng Y., Yang X., Xie G., Zheng X. 2023. Environmental Factors drive the succession of microbial community structure during wheat qu fermentation. Food bioscience, 56. https://doi.org/10.1016/j.fbio.2023.103169.
- 23. Salwan R., Rana A., Sharma V. 2023. Characterization of microbes using molecular methods. https://doi.org/10.1016/B978-0-323-95078-7.00013-9.
- 24. Scherer-Lorenzen M., Gessner M.O., Beisner B.E., Messier C., Paquette A., Petermann J.S., Soininen J., Nock C.A. 2022. Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends in Ecology & Evolution, 37(5), 454–67. https://doi.org/10.1016/j.tree.2021.12.009.
- 25. Schlatter, D.C., Paul N.C., Shah D.H., Schillinger W.F., Bary A.I., Sharratt B., Paulitz T.C. 2019. Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat. Microbial Ecology, 78(3), 737–52. https://doi.org/10.1007/s00248-019-01339-1.
- 26. Sun X., Gao W., Li H., Zhang J., Cai A., Xu M., Hao X. 2024. Animal Manures Increased Maize Yield by Promoting Microbial Activities and Inorganic Phosphorus Transformation in Reclaimed Soil Aggregates. Applied Soil Ecology, 198. https://doi.org/10.1016/j.apsoil.2024.105352.
- 27. Sunling Y., Shahzad A., Wang M., Xi Y., Shaik M.R., Khan M. 2024. Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions. Agricultural Water Management, 295. https://doi.org/10.1016/j.agwat.2024.108750.
- 28. Syrchina N.V., Pilip L.V., Kolevatykh E.P., Ashikhmina T.Y., Kuznetsov D.A. 2023. Effect of sodium hypochlorite on the microbiota and odor of manure effluents. Biology Bulletin, 50(10), 273640. https://doi.org/10.1134/S1062359023100278.
- 29. Torsvik V., Øvreås L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3), 240–45. https://doi.org/10.1016/S1369-5274(02)00324-7.
- 30. Tripathi B.M., Itumeleng Moroenyane, Chen Sherman, Yoo Kyung Lee, Jonathan M. Adams, and Yosef Steinberger. 2017. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microbial Ecology, 74(1), 168–76. https://doi.org/10.1007/s00248-017-0931-0.
- 31. Tsolova V., Nedyalkovа K., Tomov P., Kolchakov V. 2021. Microbiome status and determinants in soils from the region of maritsa-iztok coal mine (Bulgaria). ii. spolic technosols. Bulgarian Journal of Agricultural Science, 27(4), 727–35.
- 32. Wang C., Guo L., Cai Z.J., Chen J., Shen R.F. 2024. Different Contributions of Rare Microbes to Driving Soil Nitrogen Cycles in Acidic Soils under Manure Fertilization. Applied Soil Ecology, 196. https://doi.org/10.1016/j.apsoil.2024.105281.
- 33. Wolny-Koładka K., Jarosz R., Marcińska-Mazur L., Lošák T., Mierzwa-Hersztek M. 2022. Effect of mineral and organic additions on soil microbial composition. International Agrophysics, 36(May), 131–38. https://doi.org/10.31545/intagr/148101.
- 34. Wu Y., Yang W., Li Q., Qiao Q., Zhao S., Zhang Y., Yu Y., Zhang S., Li X., Kou J. 2024. Microbial community response to alpine meadow degradation and its impact on soil nutrient cycling. Agronomy, 14(1), 195. https://doi.org/10.3390/agronomy14010195.
- 35. Wydro U., Wołejko E., Łoboda T., Matejczyk M., Butarewicz A. 2014. Influence of sewage sludge on the chosen soil properties and microbiological parameters of urban grass mixtures rhizosphere. Journal of Ecological Engineering, 16(1), 171–77. https://doi.org/10.12911/22998993/604.
- 36. Xing Y., Qiu J., Chen J., Cheng D., Yin Q., Chen X., Xu L., Zheng P. 2024. Unveiling hidden interactions: microorganisms, enzymes, and mangroves at different stages of succession in the shankou mangrove nature reserve, China. Science of the Total Environment, 923. https://doi.org/10.1016/j.scitotenv.2024.171340.
- 37. Xu Z., Li R., Zhang X., Wang S., Xu X., Ho Daniel Tang K., Emmanuel Scriber II K., Zhang Z., Quan F. 2024. Molecular mechanisms of humus formation mediated by new ammonifying microorganisms in compost. Chemical Engineering Journal, 483. https://doi.org/10.1016/j.cej.2024.149341.
- 38. Xue Z., Yan H., Zhen L. 2023. For a better quality of beef: the challenge from growing livestock on limited grasslands with a production–consumption balance perspective. Foods, 12(17), 3231. https://doi.org/10.3390/foods12173231.
- 39. Zhang J., Cook J., Nearing J.T., Zhang J., Raudonis R., Glick B.R., Langille M.G.I., Cheng Z. 2021. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 245(April), 126690. https://doi.org/10.1016/j.micres.2020.126690.
- 40. Zhang J., Zhao S., Miao Q., Feng L., Chi Z., Li Z., Li W. 2024. Effect of Subsurface Drainage in Regulating Water on Desalinization and Microbial Communities in Salinized Irrigation Soils. Agronomy, 14(2), 282. https://doi.org/10.3390/agronomy14020282.
- 41. Zlenko B.I. 2012. Formation of microbocenoses at the initial stages of biological reclamation of reclaimed lands of the Nikopol manganese ore basin. В In Biological reclamation and monitoring of disturbed lands: materials of the IX All-Russian scientific conference with international participation, Ekaterinburg, 113–18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58567c8d-3e19-4324-ab54-da2faf6eec02