PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of calcination temperature on the structural, optical and magnetic properties of pure and Fe-doped ZnO nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O) nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 ºC, 600 ºC and 750 ºC for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap) with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM). M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 ºC to 750 ºC, whereas reverse effect was observed for magnetization saturation.
Wydawca
Rocznik
Strony
451--459
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Electronics & Communication Engineering, Desh Bhagat University, Mandi Gobindgarh, India
  • Chitkara University (Punjab Campus), Chandigarh, India
autor
  • Department of Electronics & Communication Engineering, GNDU Regional Campus, Gurdaspur, India
Bibliografia
  • [1] Ling Z., Leoch C., Freer R., J. Eur. Ceram. Soc., 21 (2001), 1977.
  • [2] Hsu C.Y., Ku T.F., Huang Y.M., J. Eur. Ceram. Soc., 28 (2008), 3065.
  • [3] Kumar S.S., Venkateswarlu P., Rao V.R., Rao G.N., Int. Nano Lett., 3 (30) (2013), 2345.
  • [4] Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Molnar S.V., Roukes M.L., Chichel-Kanova A.Y., Treger D.M., Science, 294 (2001), 1488.
  • [5] Ohno H., Science, 281 (1998), 951.
  • [6] Prinz G.A., Science, 282 (1998), 1660.
  • [7] Ghosh S., Mandal K., J. Magn. Magn. Mater., 322 (2010), 1979.
  • [8] Wesselinowa J.M., Aposto A.T., J. Appl. Phys., 107 (2010), 053917.
  • [9] Karmakar D., Mandal S.K., Kadam R.M., Paulose P.L., Rajarajan A.K., Nath T.K., Das A.K., Dasgupta I., Das G.P., Phys. Rev. B, 75 (2007), 144404.
  • [10] Mandal S.K., Das A.K., Nath T.K., Karmakar D., Satpati B., J. Appl. Phys., 100 (2006), 104315.
  • [11] Martinez B., Sandiumenge F., Balcells L., Arbiol J., Sibieude F., Monty C., Phys. Rev. B, 72 (2005), 165202.
  • [12] Duan L.B., Rao G.H., Yu J., Wang Y.C., Solid State Commun., 145 (2008), 525.
  • [13] Luo J., Liang J.K., Liu Q.L., Liu F.S., Zhang Y., Sun B.J., Rao G.H., J. Appl. Phys., 97 (2005), 086106.
  • [14] Wang J.B., Huang G.J., Zhong X.L., Sun L.Z., Zhou Y.C., Liu E.H., Appl. Phys. Lett., 88 (2006), 252502.
  • [15] Jayakumar O.D., Gopalakrishnan I.K., Sudakar C., Kadam R.M., Kulshreshtha S.K., J. Cryst. Growth, 300 (2007), 358.
  • [16] Bhuiyan M.R.A., Rahman M.K., Int. J. Precis. Eng. Man., 1 (2014), 10.
  • [17] Vijayaprasath G., Murugan R., Ravi G., Int. J. ChemTech Res., 6 (2014), 3385.
  • [18] Khatoon S., Ahmad T., Mater. Sci. Eng. B-Adv.,2 (2012), 325.
  • [19] Jadhav J., Patange M., Biswas S., Carbon-Sci. Tech., 5 (2013), 269.
  • [20] Vethanathan S.J.K., Perumal S., Sundar S.M., Koilpillai D.P., Karpagavalli S., Suganthi A., Int. J. Adv. Sc. Tech. Res., 6 (2013), 856.
  • [21] Faheem A., Shalendra K., Nishati A., Anwar M.S., Heo S.N., Koo B.H., Acta Mater., 60 (2012), 5190.
  • [22] Linhua X., Xiangyin L., J. Cryst. Growth, 312 (2010), 851.
  • [23] Wang C., Chen Z., He Y., Li L., Zhang D., Appl. Surf. Sci., 255 (2009), 6881.
  • [24] Aydin C., Abd El-Sadek M.S., Zheng K., Yahia I.S., Yakuphanoglu F., Opt. Laser Technol., 48 (2013), 447.
  • [25] Morales A.E., Mora E.S., Pal U., Rev. Mex. Fis., 53 (2007), 18.
  • [26] Sharma V.K., Varma G.D., Adv. Mat. Lett., 3 (2012), 126.
  • [27] Wang D., Chen Z.Q., Wang D.D., Cong J., Cao C.Y., Tang Z., Huang L.R., J. Magn. Magn. Mater., 322 (2010), 3642.
  • [28] Santos D.A.A., Macedo M.A., Physica B, 407 (2012), 3229.
  • [29] Lin F., Jiang D.M., Ma X.M., Physics B, 405 (2010), 1466.
  • [30] Cong C.J., Hong J.H., Zhang K.L., Mater. Chem. Phys., 113 (2009), 435.
  • [31] Xiong Z., Liu X.C., Zhuo S.Y., Yang J.H., Shi E.W., Yan W.S., Appl. Phys. Lett., 99 (2011), 052513.
  • [32] Ramachandran S., Narayan J., Prater J.T., Appl. Phys. Lett., 88 2006, 242503.
  • [33] Bappaditya P., Giri P.K., J. Nanosci. Nanotechno., 11 (2011), 1.
  • [34] Santara B., Giri P.K., Dhara S., Imakita K., Fujii M., J. Phys. D Appl. Phys., 47 (2014), 235304.
  • [35] Karmakar D., Mandal S.K., Kadam R.M., Paulose P.L., Rajarajan A.K., Nath T.K., Das A.K., Dasgupta I., Das G.P., Phys. Rev. B., 75 (2007), 144404.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5854d5ff-45dc-45dd-8da9-c875041279ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.